Skip to main content

Angiotensin II Enhanced The Expression Of Inhibitory Guanine Nucleotide Regulatory Protein in Vascular Smooth Muscle Cells: Blockade By at1 Antagonist

  • Chapter

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 2))

Summary

In the present studies, we have investigated the effect of angiotensin (Ang) II on guanine nucleotide regulatory protein (G protein) expression and functions in A-10 vascular smooth muscle cells (VSMCs). Ang II treatment of VSMC enhanced the levels of inhibitory guanine nucleotide regulatory protein (Gi) as well as Gi mRNA in a concentration-dependent manner as determined by immunoblot and Northern blot analysis, respectively. However, the GTPγS-mediated inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity and the receptor-mediated inhibition of adenylyl cyclase by Ang II and C-ANP4-13 [des(Gln18, Ser19, Gln20, Leu21, Gly22) ANF4-23-NH2] (C-ANP4-23) were attenuated in Ang II-treated cells. On the other hand, Gs protein expression and functions were not altered by Ang II treatment. Losartan treatment of the cells was able to partially restore the Ang II induced enhanced expression of Gi protein as well as the attenuated responsiveness of adenylyl cyclase to Ang II and C-ANP4-23 inhibition. The results suggest the implication of AT1 receptor in Ang II-induced increases of Giα protein expression in vascular smooth muscle cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul M, Bachmann J, Ganten D. 1992. The tissue renin-angiotensin system in cardiovascular disease. Trends Cardiovasc Med 2:94–99.

    Article  PubMed  CAS  Google Scholar 

  2. Schelling P, Fischer H, Ganten H. 1991. Angiotensin and cell growth: A link to cardiovascular hypertrophy. J Hypertens 9:3–15.

    PubMed  CAS  Google Scholar 

  3. Sadoshima JJ, Izumo S. 1993. Molecular characterization of angiotensin H-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423.

    Article  PubMed  CAS  Google Scholar 

  4. Geisterfer AA, Peach MJ, Owens GK. 1988. Angiotensin induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62:749–756.

    Article  PubMed  CAS  Google Scholar 

  5. Berk BC, Vekshtein V, Gordon HM, Tsuda T. 1989. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13:305–314.

    Article  PubMed  CAS  Google Scholar 

  6. Naftilan AJ, Pratt RE, Dzau VJ. 1989. Induction of platelet-dervied growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 83:1419–1424.

    Article  PubMed  CAS  Google Scholar 

  7. Taubman MB, Berk BC, Izumo S, Tsuda T, Alexander RW, Nadal-Ginard B. 1989. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem 264:526–530.

    PubMed  CAS  Google Scholar 

  8. Molloy CJ, Taylor DS, Weber H. 1993. Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem 268:7338–7345.

    PubMed  CAS  Google Scholar 

  9. Tsuda T, Kawahara Y, Ishida Y, Koide M, Shii K, Kokoyama M. 1992. Angiotensin II stimulates two myelin basic protein/microtubule-associated protein 2 kinases in cultured vascular smooth muscle cells. Circ Res 71:620–630.

    Article  PubMed  CAS  Google Scholar 

  10. Duff JL, Berk BC, Corson MA. 1992. Angiotensin II stimulates the pp44 and pp42 mitogen-activated protein kinases in cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 188:257–264.

    Article  PubMed  CAS  Google Scholar 

  11. Timmermans PBMWM, Wong PC, Chin AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251.

    PubMed  CAS  Google Scholar 

  12. Bumpus FM, Catt KJ, Clin AT, de Gasparo M, Goodfriend T, Husain AD, Peach AJ, Taylor DG, Timmermans PBMWM. 1991. Nomenclature for angiotensin receptors. Hypertension 17:720–723.

    Article  PubMed  CAS  Google Scholar 

  13. Viswanathan M, Tsutsumi K, Correa FMA, Saavedra JM. 1991. Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun 179:1361–1367.

    Article  PubMed  CAS  Google Scholar 

  14. Chang RSL, Lotti VJ. 1991. Angiotensin receptor subtypes in rat, rabbit and monkey tissues: Relative distribution and species dependence. Life Sci 49:1485–1490.

    Article  PubMed  CAS  Google Scholar 

  15. Griendling KK, Rittenhouse SE, Brock TA, Ekstein LS, Gimbrone MA, Alexander RW. 1996. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem 161:5901–5906.

    Google Scholar 

  16. Lassègue B, Alexander RW, Clark M, Griendling KK. 1991. Angiotensin II-induced phosphatidyl choline hydrolysis in cultured vascular smooth muscle cells: Regulation and localization. Biochem J 276:19–25.

    PubMed  Google Scholar 

  17. Alexander RW, Gimbrone MAJ. 1976. Stimulation of prostaglandin E synthesis in cultured human unblilical vein smooth muscle cells. Proc Natl Acad Sci USA 73:1617–1620.

    Article  PubMed  CAS  Google Scholar 

  18. Anand-Srivastava MB. 1989. Angiotensin II receptors negatively coupled to adneylate cyclase in rat myocardial sarcolemma: Involvement of inhibitory guanine nucleotide regulatory protein. Biochem Pharmacol 38:489–496.

    Article  PubMed  CAS  Google Scholar 

  19. Anand-Srivastava MB. 1983. Angiotensin II receptors are negatively coupled to adenylate cyclase in rat aorta. Biochem Biophys Res Comun 117:420–428.

    Article  CAS  Google Scholar 

  20. Pobiner BF, Hewlett EL, Garrison JC. 1985. Role of Ni in coupling angiotensin receptors to inhibition of adenylyl cyclase in hepatocytes. J Biol Chem 260:16200–16209.

    PubMed  CAS  Google Scholar 

  21. Ohya Y, Sperelakis N. 1991. Involvement of a GTP-binding protein in stimulating action of angiotensin II on calcium channels in vascular smooth muscle cells. Circ Res 68:763–771.

    Article  PubMed  CAS  Google Scholar 

  22. Tsuda T, Alexander RW. 1990. Angiotensin II stimulates phosphorylation of nuclear lamins via protein kinase C-dependent mechanism in cultured vascular smooth muscle cells. J Biol Chem 265:1165–1170.

    PubMed  CAS  Google Scholar 

  23. Katada T, Gilman AH, Watanabe Y, Banes S, Jakobs KH. 1985. Protein kinase C phosphorylates the inhibitory guanine nucleotide binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151:431–437.

    Article  PubMed  CAS  Google Scholar 

  24. Gilman AG. 1984. G proteins and dual control of adenylate cyclase. Cell 36:577–579.

    Article  PubMed  CAS  Google Scholar 

  25. Stryer L, Broune HR. 1986. G-proteins: A family of signal transducers. Annu Rev Cell Biol 2:391–419.

    Article  PubMed  CAS  Google Scholar 

  26. Robishaw JD, Smigel MD, Gilman AG. 1986. Molecular basis for two formsof the G-protein that stimulates adenylate cyclase. J Biol Chem 261:9567–9590.

    Google Scholar 

  27. Bray P, Carter A, Simons C, Guo V, Puckert C, Kamholz J, Spiegel A, Nirenberg M. 1986. Human cDNA clones for four species of G alphas signal transduction protein. Proc Natl Acad Sci USA 83:8893–8897.

    Article  PubMed  CAS  Google Scholar 

  28. Jones DT, Reed RR. 1987. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 262:14241–14249.

    PubMed  CAS  Google Scholar 

  29. Itoh H, Kozaka T, Nagata S, Nakamura S, Katada T, Ui M, Iwai S, Ohtsuka E, Kawasaki H, Suzuki K. 1986. Molecular cloning and sequence determination of cDNAs for alpha of the guanine nucleotide-binding proteins Gs, Gi and Go from rat brain. Proc Natl Acad Sci USA 83:3776–3786.

    Article  PubMed  CAS  Google Scholar 

  30. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, Corvo P. 1992. Molecular basis of human hypertension: Role of angiotensinogen. Cell 71:169–180.

    Article  PubMed  CAS  Google Scholar 

  31. Walker WG, Whelton PK, Saito H, Russel RP, Hermann J. 1979. Relation between blood pressure and renin, renin substrate, angiotensin II, aldosterone and urinary sodium and potassium in 574 ambulato subjects. Hypertension 1:287–291.

    Article  PubMed  CAS  Google Scholar 

  32. Ohkubo H, Kawakami H, Kakehi Y, Takumi T, Arai H, Yokota Y, Iwai M, Tanabe Y, Masu M, Hata J, Iwao H, Okamoto H, Koyoyama M, Nomura T, Katsuki M, Nakanishi S. 1990. Generation of transgenic mice with elevated blood pressure by introductionsof the rat renin cord angiotensinogen genes. Proc Natl Acad Sci USA 87:5153–5157.

    Article  PubMed  CAS  Google Scholar 

  33. Kimura S, Mullins JJ, Bunnemann B, Metzer R, Hilgenfeldt U, Zimmermann F, Jacob H, Fuxe K, Ganten D, Kaling M. 1992. High blood pressure in transgenic mice carrying the rat angiotensinogen gene. EMBO J 11:821–827.

    PubMed  CAS  Google Scholar 

  34. Campbell DJ, Habener JF. 1986. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 78:31–39.

    Article  PubMed  CAS  Google Scholar 

  35. Anand-Srivasava MB, de Champlain J, Thibault C. 1993. DOCA-salt hypertensive rat hearts exhibit altered expression of Gi proteins. Am J Hypertens 6:72–75.

    Google Scholar 

  36. Anand-Srivastava MB. 1992. Enhanced expression of inhibitory guanine nucleotide regulatory protein in spontaneously hypertensive rats: Relationship to adneylate cyclase inhibition. Biochem J 288:79–85.

    PubMed  CAS  Google Scholar 

  37. Pandey SK, Anand-Srivastava MB. 1996. Modulation of G-protein expression by angitotensin converting enzyme inhibitor captopril in hearts from spontaneously hypertensive rats: Relationship with adenylyl cyclase. Am J Hypertens 9:833–837.

    Article  PubMed  CAS  Google Scholar 

  38. Palaparti A, Anand-Srivastava MB. 1996. Modulation of ANF-R2/ANP-C receptors by angiotensin II in vascular smooth muscle cells. Am J Hypertens 9:930–934.

    Article  PubMed  CAS  Google Scholar 

  39. Salomon Y, Londos C, Rodbell M. 1974. A highly sensitive adenylyl cyclase assay. Anal Biochem 58:541–548.

    Article  PubMed  CAS  Google Scholar 

  40. Lowry OH, Roseborough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275.

    PubMed  CAS  Google Scholar 

  41. Marcil J, Thibault C, Anand-Srivastava MB. 1997. Enhanced expression of Gi protein precedes the development of blood pressure in spontaneously hypertensive rats. J Mol Cell Cardiol 29.

    Google Scholar 

  42. Thibault C, Anand-Srivastava MB. 1992. Altered expression of G-protein mRNA in spontaneously hypertensive rats. FEBS Letters 313:160–164.

    Article  PubMed  CAS  Google Scholar 

  43. Feinberg AP, Vogerstein B. 1983. A technique for radiolabeling DNA restriction endonuclease fragment to high specific activity. Anal Biochem 132:6–13.

    Article  PubMed  CAS  Google Scholar 

  44. Clark CJ, Milligan G, McLellan AR, Connell JMC. 1992. Guanine nucleotid regulatory protein levels and functions in spontaneously hypertensive rat vascular smooth muscle cells. Biochem Biophys Acta 1136:290–296.

    Article  PubMed  CAS  Google Scholar 

  45. Anand-Srivastava MB, Srivastava AK, Cantin M. 1987. Pertussis toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase: Involvement of inhibitory guanine nucleotide regulatory protein. J Biol Chem 262:4931–4934.

    PubMed  CAS  Google Scholar 

  46. Anand-Srivastava MB, Sairam MR, Cantin M. 1990. Ring deleted analogs of atrial natriuretic factor inhibits adenylate cyclase/cAMP system: Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J Biol Chem 265:8566–8572.

    PubMed  CAS  Google Scholar 

  47. Sims C, Ashby K, Douglas JG. 1992. Angiotensin II induced changes in guanine nucleotide binding and regulatory proteins. Hypertension 19:146–152.

    Article  PubMed  CAS  Google Scholar 

  48. Giasson E, Meloche S. 1995. Role of P70S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. J Biol Chem 270:5225–5231.

    Article  PubMed  CAS  Google Scholar 

  49. Begeot M, Langlois D, Spiegel AM, Saez JM. 1991. Regulation of guanine nucleotide binding regulatory proteins in cultured adrenal cells by adrenocorticotropin and angiotensin II. Endocrinol 128:3162-2168.

    Google Scholar 

  50. Anand-Srivastava MB. 1993. Platelets from spontaneously hypertensive rats exhibit decreased expression of inhibitory guanine nucleotide regulatory protein relation with adenylyl cyclase activity. Circ Res 73:1032–1039.

    Article  PubMed  CAS  Google Scholar 

  51. Chabrier PE, Roubert P, Lonchampt MO, Plas P, Braquet P. 1988. Regulation of atrial natriuretic factor receptors by angiotensin II in rat vascular smooth muscle. J Biol Chem 263:13199–13202.

    PubMed  CAS  Google Scholar 

  52. Anderson KM, Murahashi T, Dostal DE, Peach MJ. 1993. Morphological and biochemical analysis of angiotensin II internalization in cultured vascular smooth muscle cells. Am J Physiol 264:179–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anand-Srivastava, M.B., Palaparti, A. (1998). Angiotensin II Enhanced The Expression Of Inhibitory Guanine Nucleotide Regulatory Protein in Vascular Smooth Muscle Cells: Blockade By at1 Antagonist. In: Dhalla, N.S., Zahradka, P., Dixon, I.M.C., Beamish, R.E. (eds) Angiotensin II Receptor Blockade Physiological and Clinical Implications. Progress in Experimental Cardiology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5743-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5743-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7631-6

  • Online ISBN: 978-1-4615-5743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics