Skip to main content

Role of Angiotensin II Receptor Blockade During Remodeling After Myocardial Infarction

  • Chapter
Angiotensin II Receptor Blockade Physiological and Clinical Implications

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 2))

Summary

Increased levels of angiotensin (Ang) II in myocardial infarction (MI), left ventricular (LV) volume overload, and heart failure promote vasoconstriction, increased LV impedance, ischemic injury, ischemia-reperfusion (IR) injury, and LV remodeling with hypertrophy and fibrosis. One strategy for achieving cardioprotection is to decrease Ang II receptor stimulation using angiotensin-converting enzyme (ACE) inhibitors. Another strategy for achieving cardioprotection is by selective blockade of Ang II type 1 (AT1) receptors or type 2 (AT2) receptors using selective antagonists. Functionality has been associated mainly with AT1 receptors, and AT1 receptor blockade is emerging as a new class of agents for therapy of hypertension, LV hypertrophy, and congestive heart failure. The role of AT1 blockade in limiting remodeling after MI has been controversial. Our recent results using the isolated rat working heart model suggest functional roles for both AT1 and AT2 receptor blockade in recovery from IR injury. Furthermore, chronic treatment with AT1 blockade in dogs limited early LV remodeling. Thus, Ang II receptor antagonists are emerging as new cardioprotective agents, alone or in combination with ACE inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfeffer MA, Braunwald E. 1990. Ventricular remodelling after myocardial infarction. Circulation 81:1161–1172.

    Article  PubMed  CAS  Google Scholar 

  2. Jugdutt BI. 1993. Prevention of ventricular remodelling post myocardial infarction: Timing and duration of therapy. Can J Cardiol 9:103–114.

    PubMed  CAS  Google Scholar 

  3. Jugdutt BI. 1995. Modification of left ventricular remodelling after myocardial infarction. In The failing heart. Ed. NS Dhalla, RE Beamish, and M Nagano, 231–245. New York: Raven Press.

    Google Scholar 

  4. Jugdutt BI, Amy RW. 1986. Healing after myocardial infarction in the dog: Changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91–102.

    Article  PubMed  CAS  Google Scholar 

  5. Jugdutt BI, Joljart MJ, Khan MI. 1996. Rate of collagen deposition during healing after myocardial infarction in the rat and dog models: Mechanistic insights into ventricular remodeling. Circulation 94:94–101.

    Article  PubMed  CAS  Google Scholar 

  6. Gaudron P, Eilles C, Kugler I, Ertl G. 1993. Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755–763.

    Article  PubMed  CAS  Google Scholar 

  7. Dzau VJ. 1988. Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation 77:I4–I13.

    Article  PubMed  CAS  Google Scholar 

  8. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251.

    PubMed  CAS  Google Scholar 

  9. Zughaib ME, Sun JZ, Bolli R. 1993. Effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury: An overview. Basic Res Cardiol 88:155–167.

    PubMed  CAS  Google Scholar 

  10. Przyklenk K, Kloner RA. 1993. “Cardioprotection” by ACE-inhibitors in acute myocardial ischemia and infarction? Basic Res Cardiol 88:139–154.

    PubMed  CAS  Google Scholar 

  11. Braunwald E, Kloner RA. 1982. The stunned myocardium: Prolonged, post-inchemic ventricular dysfunction. Circulation 66:1146–1149.

    Article  PubMed  CAS  Google Scholar 

  12. Hochman JS, Choo H. 1987. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 75:299–306.

    Article  PubMed  CAS  Google Scholar 

  13. Bolli R. 1990. Mechanism of myocardial stunning. Circulation 82:723–738.

    Article  PubMed  CAS  Google Scholar 

  14. Kim CB, Braunwald E. 1993. Potential benefits of late reperfusion of infarcted myocardium. The open artery hypothesis. Circulation 88:2426–2436.

    Article  PubMed  CAS  Google Scholar 

  15. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. 1995. Impact of left ventricular unloading after late reperfusion of canine anterior myocardial infarction on remodeling and function using isosorbide-5-mononitrate. Circulation 92:926–934.

    Article  PubMed  CAS  Google Scholar 

  16. Ellis SG, Henschke CL, Sandor T, Wynne J, Braunwald E, Kloner RA. 1988. Predictors of success for coronary angioplasty performed for AMI. J Am Coll Cardiol 12:1407-1055.

    Google Scholar 

  17. Ambrosio G, Becker LC, Hutchins GM, Weisman HR, Weisfeldt ML. 1986. Reduction of experimental infarct size by recombinant human Superoxide dismutase. Circulation 74:1424–1433.

    Article  PubMed  CAS  Google Scholar 

  18. Rogers WJ, Bowlby LJ, Chandra NC, French WJ, Gore JM, Lambrew CT, Rubison, Tiefenbrun AJ, Weaver WDX, for the Participants. 1994. Treatment of myocardial infarction in the United States (1990 to 1993). Observations from the national registry of myocardial infarction. Circulation 90:2103–2114.

    CAS  Google Scholar 

  19. Fujiwara H, Ashraf M, Sato S, Millard R. 1982. Transmural cellular damage and blood flow distribution in early ischemia in pig heart. Circ Res 51:683–693.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C. 1987. Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (“stunned”) but viable myocardium. J Am Coll Cardiol 10:1322–1334.

    Article  PubMed  CAS  Google Scholar 

  21. Pfeffer JM, Pfeffer MA, Braunwald E. 1985. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95.

    Article  PubMed  CAS  Google Scholar 

  22. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. 1985. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72:406–412.

    Article  PubMed  CAS  Google Scholar 

  23. Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. 1988. Effect of captopril on progressive ventricular dilatation after anterior MI. N Engl J Med 319:80–86.

    Article  PubMed  CAS  Google Scholar 

  24. Sharpe N, Murphy J, Smith H, Hannan S. 1988. Treatment of patients with symptomless LV dysfunction after MI. Lancet 1:255–259.

    Article  PubMed  CAS  Google Scholar 

  25. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown JR EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM, on behalf of the SAVE Investigators. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 327:669–677.

    Article  PubMed  CAS  Google Scholar 

  26. Sutton M St.J, Pfeffer MA, Plappert T, Rouleau J-L, Moye LA, Dagenais GR, Lamas GA, Klein M, Sussex B, Goldman S, Menapace FJ, Parker JO, Lewis S, Sestier F, Gordon DF, McEwan P, Bernstein V, Braunwald E, for the SAVE Investigators. 1994. Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 89:68–75.

    Article  Google Scholar 

  27. Gruppo Italiano per lo Studio della Soprawivenza neU’ Infarcto Miocardico. 1994. GISSI-3: Effects of lisinopril and transdermal trinitrate singlely and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 343:1115–1122.

    Google Scholar 

  28. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. 1995. ISIS-4: A randomized factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected myocardial infarction. Lancet 345:669–685.

    Article  Google Scholar 

  29. Swedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H, for the CONSENSUS II Study Group. 1992. Effects of early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the co-operative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 327:678–684.

    Article  PubMed  CAS  Google Scholar 

  30. Ertl G, Jugdutt BI. 1994. ACE inhibition after myocardial infarction: Can megatrials provide answers? Lancet 344:1068–1069.

    Article  PubMed  CAS  Google Scholar 

  31. Hall AS, Tan L-B, Ball SG. 1994. Inhibition of ACE/kininase-II, acute myocardial infarction, and survival. Cardiovasc Res 28:190–198.

    Article  PubMed  CAS  Google Scholar 

  32. Furberg CD, Campbell RWF, Pitt B. 1993. ACE inhibitors after myocardial infarction. N Engl J Med 328:967–969.

    PubMed  CAS  Google Scholar 

  33. van Krimpen C, Schoemaker RG, Cleutjens JPM, Smits JFM, Struyker-Boudier HAJ, Bosman FT, Daemen MJAP. 1991. Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res Cardiol 86:149–155.

    PubMed  Google Scholar 

  34. Schoemaker RG, Debets JJM, Struyker-Boudier HAJ, Smits JFM. 1991. Delayed but not immediate captopril therapy improves cardiac function in conscious rats, following myocardial infarction. J Mol Cell Cardiol 23:187–197.

    Article  PubMed  CAS  Google Scholar 

  35. Michel JB, Lattion AL, Salzmann JL, Cerol ML, Philippe M, Camilleri JP, Corvol P. 1988. Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ Res 62:641–650.

    Article  PubMed  CAS  Google Scholar 

  36. Smits JFM, van Krimpen C, Schoemaker RG, Cleutjens JPM, Daemen MJAP. 1992. Angiotensin II receptor blockade after myocardial infarction in rats: Effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:722–778.

    Google Scholar 

  37. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. 1995. Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation 91:802–812.

    Article  PubMed  CAS  Google Scholar 

  38. Jugdutt BI. 1995. Effect of captopril and enalapril on left ventricular geometry, function and collagen during healing after anterior and inferior myocardial infarction in the dog. J Am Coll Cardiol 25:1718–1725.

    Article  PubMed  CAS  Google Scholar 

  39. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. 1995. Combined captopril and isosorbide dinitrate during healing after myocardial infarction. Effect on remodeling, function, mass and collagen. J Am Coll Cardiol 25:1089–1096.

    Article  PubMed  CAS  Google Scholar 

  40. Wiemer G, Schölkens BA, Becker RHA, Busse R. 1992. Ramprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18:558–563.

    Article  Google Scholar 

  41. Dzau VJ. 1993. The role of mechanical and humoral factors in growth regulation of vascular smooth muscle and cardiac myocytes. Curr Opin Nephrol Hypertens 2:27–32.

    Article  PubMed  CAS  Google Scholar 

  42. Garg UC, Hassid A. 1989. Nitric-oxide vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777.

    Article  PubMed  CAS  Google Scholar 

  43. Timmermans PBMWM, Smith RD. 1994. Angiotensin II receptor subtypes: Selective antagonists and functional correlates. Eur Heart J 15(Suppl D):79–87.

    Article  PubMed  CAS  Google Scholar 

  44. Smith RD, Timmermans PBMWM. 1994. Human angiotensin receptor subtypes. Current Opinion in Nephrology and Hypertension 3:112–122.

    Article  PubMed  CAS  Google Scholar 

  45. Regitz-Zagrosek V, Auch-Shwelk W, Neuss M, Fleck E. 1994. Regulation of angiotensin receptor subtypes in cell cultures, animal models and human diseases. Eur Heart J 15:92–97.

    Article  PubMed  CAS  Google Scholar 

  46. Rabkin SW. 1996. The angiotensin II subtype 2 (AT2) receptor is linked to protein kinase C but not to cAMP-dependent pathways in the cardiomyocyte. Can J Physiol Pharmacol 74:125–131.

    Article  PubMed  CAS  Google Scholar 

  47. Ford WR, Clanachan AS, Jugdutt BI. 1996. Opposite effects of angiotensin receptor antagonists on recovery of mechanical function after ischemia-reperfusion in isolated working rat hearts. Circulation 94:3087–3089.

    Article  PubMed  CAS  Google Scholar 

  48. Tsuchida A, Liu Y, Cohen M, Downey J. 1994. α1-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 75:576–585.

    Article  PubMed  CAS  Google Scholar 

  49. Henry P, Demolombe S, Puceat M, Escande D. 1996. Adenosine A1 stimulation activates s-protein kinase C in rat ventricular myocytes. Circ Res 78:161–165.

    Article  PubMed  CAS  Google Scholar 

  50. Ford WR, Clanachan AS, Lopaschuk G, Schulz R, Jugdutt BI. 1996. Effect of losartan (DuP 753) on mechanical function during reperfusion of ischemic rat working hearts (Abstract). Can J Cardiol 12:160E.

    Google Scholar 

  51. Ford WR, Clanachan AS, Lopaschuk G, Schulz R, Jugdutt BI. 1997. Role of endogenous angiotensin II in the postischemic recovery of mechanical function and glucose metabolism in isolated rat hearts (Abstract). J Am Coll Cardiol 29:150A.

    Google Scholar 

  52. Jugdutt BI, Khan MI. 1996. Effect of a novel angiotensin II type 1 (AT1) receptor antagonist (L-158,809) on hemodynamics and early LV remodeling after canine myocardial infarction (Abstract). Can J Cardiol 94:1–623.

    Google Scholar 

  53. Fowler NO, Holmes JC. 1964. Coronary and myocardial actions of angiotensin. Circ Res 14:191–201.

    Article  PubMed  CAS  Google Scholar 

  54. Lindpainter K, Jun M, Wilhelm MJ, Suzuki F, Linz W, Schoelkens BA. 1988. Intracardiac generation of angiotensin and its physiologic role. Circulation 77:118–123.

    Google Scholar 

  55. Brasch H, Sieroslawski L, Dominiak P. 1993. Angiotensin II increases norepinephnne release from atria by acting on angiotensin subtype 1 receptors. Hypertension 22:699–704.

    Article  PubMed  CAS  Google Scholar 

  56. Peach MJ. 1981. Molecular actions of angiotensin. Biochem Pharmacol 30:2745–2751.

    Article  PubMed  CAS  Google Scholar 

  57. Schieffer B, Wirger A, Meybrunn M, Scitz S, Holtz J, Riede UN, Drexler H. 1994. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273–2282.

    Article  PubMed  CAS  Google Scholar 

  58. Yoshiyama M, Kim S, Yamagishi H, Omura T, Tani T, Yanagi S, Toda I, Teragaki M, Akioka K, Takeuchi K, Takeda T. 1994. Cardioprotective effect of the angiotensin II type 1 receptor antagonist TCV-116 on ischemia-reperfusion injury. Am Heart J 128:1–6.

    Article  PubMed  CAS  Google Scholar 

  59. Hunyady L, Balla T, Catt K. 1996. The ligand binding site of the angiotensin AT1 receptor. TiPs 17:135–140.

    PubMed  CAS  Google Scholar 

  60. Weimer G, Schölkens BA, Wagner A, Heitsch H, Linz W. 1993. The possible role of angiotensin II subtype AT2 receptors in endothelial cells and isolated ischemic rat hearts. J Hypertens 11(Suppl 5):S234–S235.

    Google Scholar 

  61. Kohout TA, Rogers TB. 1995. Angiotensin activates the Na+/HCO3 - symport through a phosphoinositide-independent mechanism in cardiac cells. J Biol Chem 270:20432–20438.

    Article  PubMed  CAS  Google Scholar 

  62. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156–160.

    Article  PubMed  CAS  Google Scholar 

  63. Leung BI, Benessiamo J, Henrion D, Caputo L, Heymes C, Duriez M, Poiterin P, Samuel JL. 1996. Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest 98:418–425.

    Article  Google Scholar 

  64. McDonald KM, Garr M, Carlyle PF, Francis GS, Hauer K, Hunter DW, Parish T, Stillman A, Cohn JN. 1994. Relative effects of α1-adrenergic blockade, converting enzyme inhibitor therapy, and angiotensin II subtype 1 receptor blockade on ventricular remodeling in the dog. Circulation 90:3034–3046.

    Article  PubMed  CAS  Google Scholar 

  65. Matsubara H, Kanasaki M, Murasawa S, Tsukaguchi Y, Nio Y, Inada M. 1994. Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J Clin Invest 93:1592–1601.

    Article  PubMed  CAS  Google Scholar 

  66. Jugdutt BI, Tang SB, Khan MI, Basualdo CA. 1992. Functional impact on remodeling during healing after non-Q-wave versus Q-wave anterior myocardial infarction in the dog. J Am Coll Cardiol 20:722–731.

    Article  PubMed  CAS  Google Scholar 

  67. Jugdutt BI, Khan MI. 1992. Impact of infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog. Can J Physiol Pharmacol 70:949–958.

    Article  PubMed  CAS  Google Scholar 

  68. Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker LH, Armstrong PW. 1990. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 82:1387–1401.

    Article  PubMed  CAS  Google Scholar 

  69. Whittaker P, Boughner DR, Kloner RA. 1991. Role of collagen in acute myocardial infarct expansion. Circulation 84:2123–2124.

    Article  PubMed  CAS  Google Scholar 

  70. Przyklenk K, Kloner RA. 1986. Superoxide dismutase plus catalase improve contractile function in the canine model of the stunned myocardium. Circ Res 58:148–156.

    Article  PubMed  CAS  Google Scholar 

  71. Boyle MP, Weisman HF. 1993. Limitation of infarct expansion and ventricular remodeling by late reperfusion. Study of time course and mechanism in a rat model. Circulation 88:2872–2883.

    Article  PubMed  CAS  Google Scholar 

  72. Nabel EG, Topol EJ, Galeana A, Ellis G, Bates ER, Werns SW, Walton JA, Muller DW, Schwaiger M, Pitt B. 1991. A randomized placebo-controlled trial of combined early intravenous captopril and recombinant tissue-type plasminogen activator therapy in acute myocardial infarction. J Am Coll Cardiol 17:467–473.

    Article  PubMed  CAS  Google Scholar 

  73. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. 1991. Tissue-specific activation of cardiac angiotensin-converting enzyme in experimental heart failure. Circ Res 69:475–482.

    Article  PubMed  CAS  Google Scholar 

  74. Lindpaintner K, Niedermaier N, Drexler H, Ganten D. 1992. Left ventricular remodeling after myocardial infarction: Does the cardiac renin-angiotensin system play a role? J Cardiovasc Pharmacol 20(Suppl 1):S41–S47.

    PubMed  CAS  Google Scholar 

  75. Baker KM, Aceto JF. 1990. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 258:H610–H618.

    Google Scholar 

  76. Weber KT, Brilla CG. 1991. Pathologic hypertrophy and cardiac interstitium: Fibrosis and renin-aldosterone system. Circulation 83:1849–1856.

    Article  PubMed  CAS  Google Scholar 

  77. Linz W, Schölkens BA. 1992. A specific β2-bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol 105:771–772.

    Article  PubMed  CAS  Google Scholar 

  78. McDonald KM, Mock J, D’Aloia A, Parrish T, Hauer K, Francis G, Stillman A, Cohn JN. 1995. Bradykinin antagonism inhibits the antigrowth effect of converting enzyme inhibition in the dog myocardium after discrete transmural myocardial necrosis. Circulation 91:2043–2048.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jugdutt, B.I. (1998). Role of Angiotensin II Receptor Blockade During Remodeling After Myocardial Infarction. In: Dhalla, N.S., Zahradka, P., Dixon, I.M.C., Beamish, R.E. (eds) Angiotensin II Receptor Blockade Physiological and Clinical Implications. Progress in Experimental Cardiology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5743-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5743-2_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7631-6

  • Online ISBN: 978-1-4615-5743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics