Skip to main content

The Macroglia Of Teleosts: Characterization, Distribution and Development

  • Chapter

Abstract

We present morphological, immunocytochemical and developmental studies on the macroglia of species of two groups of teleosts carried out in our laboratories. One of these species, the grey mullet (Chelon labrosus; Acanthopterygii), is an advanced euteleost. The other species are trouts (Salmo trutta fario, Oncorhynchus mykiss; Protacanthopterygii) which belong to the basal stock of euteleosts. We present our results on a specialized astroglial structure of the medulla oblongata of the adult grey mullet, the distribution of astroglial markers (vimentin, GFAP and S-100) in the brain of the adult mullet and their pattern of expression in juveniles of 5 to 70 mm in length, as well as results obtained with S-100 and GFAP immunocytochemistry in trout. In old adult mullet (circa 50 cm in length), we have studied with light and electron microscopy the diversity of oligodendrocytes of the lateral line area of the medulla oblongata. In the brain of old adult trout (circa of 36 cm in length), the NADPHd histochemical reaction was used to study the large population of oligodendrocytes. Finally, we studied the development of the oligodendrocytes in trout using an antibody to the 36K myelin protein. Our results in old adults of two species pertaining to different lines within teleosts showed that diversity of oligodendrocyte sizes in different regions of the brain is a shared characteristic of teleosts and mammals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achúcarro, N. (1915) De l’évolution de la névroglie, et spécialement de ses relations avec l’appareil vasculaire. Trab. Lab. Invest. Biol. Madrid, 13:169–212.

    Google Scholar 

  • Aloisi, F., C. Agresti, D. D’Urso and G. Levi (1988) Diferentiation of bipotential glial precursors into oligodendrocytes is promoted by interaction with type-1 astrocytes in cerebellar cultures. Proc. Natl. Acad. Sci. USA 85:6167–6171.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla, A., Buskrik and F. Nottebohm (1987) Monoclonal antibody reveals radial glia in the adult avian brain. J. Comp. Neurol., 264:159–170.

    Article  PubMed  CAS  Google Scholar 

  • Anadón, R. (1974) Núcleos electromotores de la tembladera (Torpedo marmorata Risso). I. Lóbulos electricos. Trab. Inst. Cajal Inv. Biol., 66:103–131.

    Google Scholar 

  • Anadón, R., F. Adrio, M.A. Rodríguez, G. Jeserich and I. Rodríguez-Moldes (in preparation) Development of oligodendrocytes and myelination in the brain of the brown trout: a 36K myelin protein immunocytochemical study.

    Google Scholar 

  • Anderson, M.J., K.A. Swanson, S.G. Waxman, and L.F. Eng (1984) Glial fibrillary acidic protein in regenerating teleost spinal cord. J. Histochem. Cytochem., 32:1099–1106.

    Article  PubMed  CAS  Google Scholar 

  • Andriezen, W.L. (1893) The neuroglia elements of the brain. Br. Med. J., 2:227–230.

    Article  PubMed  CAS  Google Scholar 

  • Antanitus, D.S., B.H. Choi, and L.W. Lapham (1976) The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence. Brain Res., 103:613–616.

    Article  PubMed  CAS  Google Scholar 

  • Arévalo, R., J. Alonso, E. García-Ojeda, J.G. Briñón, C. Crespo and J. Aijón (1995) NADPH-diaphorase in the central nervous system of the tench (Tinca tinca L, 1758). J. Comp. Neurol., 352:398–420.

    Article  PubMed  Google Scholar 

  • Bignami, A., and D. Dahl (1974) Astrocyte-specific protein and neuroglial differentiation. An immunofluorescent study with antibodies to the glial fibrillary acidic protein. J. Comp. Neurol., 153:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Bignami, A., L.F. Eng, D. Dahl, and C.T. Uyeda (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res., 43: 429–435.

    Article  PubMed  CAS  Google Scholar 

  • Bitner, C., S. Benjelloun-Touimi, and P. Dupouey (1987) Palisading pattern of subpial astroglial processes in the adult rodent brain: relationship between the glial palisading pattern and the axonal and astroglial organization. Develop. Brain Res., 37:167–178.

    Article  Google Scholar 

  • Blakemore, W.F. (1982) Myelination, demyelination and remyelination in the CNS. In N.Th. Smith and J.B. Cavanagh (eds.): Recent Advances in Neuropathology, Vol. 2. Edinburgh: Churchill-Livingstone, pp. 53–81.

    Google Scholar 

  • Blakemore, W.F. and A.J. Crang (1989) The relationship between type-1 astrocytes, Schwann cells and oligodendrocytes following transplantation of glial cell cultures into demyelinating lesions in the adult rat spinal cord. J. Neurocytol., 18:519–528

    Article  PubMed  CAS  Google Scholar 

  • Bodega, G., B. Fernández, I. Suárez, and C. Gianonatti (1988) Glioarchitecture de la moelle épinière du crapaud (Bufo bufo L.): étude au microscope optique avec des techniques d’impregnation métallique. Can. J. Zool., 66:2415–2420.

    Article  Google Scholar 

  • Bodega, G., I. Suárez, and B. Fernández (1990) Radial astrocytes and ependymocytes in the spinal cord of the adult toad (Bufo bufo L.). Cell Tiss. Res., 260:307–314.

    Article  CAS  Google Scholar 

  • Bodega, G., I. Suárez, F. Oteruelo, B. Fernández, and C. Gianonatti (1990) Ultrastructure of the subpial glial limitans in the cerebellum of the lizard (Lacerta lepida). Anat. Anz., 171:153–158.

    PubMed  CAS  Google Scholar 

  • Bodega, G., I. Suárez, M. Rubio, and B. Fernández (1990) Distribution and characteristics of the different astroglial cell types in the adult lizard (Lacerta lepida) spinal cord. Anat. Embryol., 181:567–575.

    Article  PubMed  CAS  Google Scholar 

  • Bondareff, W., and D.G. McLone (1973) The external glial limiting membrane in macaca: ultrastructure of a laminated glioepithelium. Am. J. Anat., 136:277–296.

    Article  PubMed  CAS  Google Scholar 

  • Bozhilova-Pastirova, A., K. Ichev, and V. Ovcharov (1989) Morphology of glial cells in the lower olivary complex of the pigeon (Columba livia). II. Oligodendrocytes. Eksp. Med. Morfol., 28:26–31.

    PubMed  CAS  Google Scholar 

  • Braak, E. (1975) On the fine structure of the external glial layer in the isocortex of man. Cell Tiss. Res., 157:367–390.

    CAS  Google Scholar 

  • Bredt, D., and S.H. Snyder (1992) Nitric oxide, a novel neuronal messenger. Neuron, 8:3–11.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D.S., C.E. Glatt, P.M. Hwang, M. Fotuhi, T.M. Dawson, and S.H. Snyder (1991) Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron, 7:615–624.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D., P.M. Hwang, and S.H. Snyder (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature, 347:768–770.

    Article  PubMed  CAS  Google Scholar 

  • Brightman, M.W., and T.S. Reese (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol., 40:648–677.

    Article  PubMed  CAS  Google Scholar 

  • Bunge, R.P. (1968) Glial cells and the central myelin sheath. Phys. Rev., 48:197–251.

    CAS  Google Scholar 

  • Cajal, S.R. (1909) Histologie du système nerveux de l’homme et des vertébrés. Paris: Maloine.

    Google Scholar 

  • Cajal, S.R. (1913) Contribución al conocimiento de la neuroglia del cerebro humano. Trab. Lab. Invest. Biol. Univ. Madrid, 18:225–315.

    Google Scholar 

  • Cardone, B., and B.I. Roots (1990) Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus, and snail. Glia, 3:180–192.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A., T. Sivron, R. Duvdevani and M. Schwartz (1990) Oligodendrocyte cytotoxic factor associated to fish optic nerve regeneration: implications for mam-malian CNS regeneration. Brain Res., 537:24–32.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, D., D.C. Rueger, A. Bignami, K. Weber, and M. Osborn (1981) Vimentin, the 57,000 dalton protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur. J. Cell Biol., 24:191–196.

    PubMed  CAS  Google Scholar 

  • Dahl, D., C.J. Crosby, J. Sethi, and A. Bignami (1985) Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J. Comp. Neurol., 239:75–88.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, T.M., D.S. Bredt, M. Fotuhi, P.M. Hwang, and S.H. Snyder (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. USA, 88:7797–7801.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel, R. (1974) Junctions in the central nervous system of the cat. II. A contribution to the tertiary structure of the axonal-glial junctions in the paranodal region of the node de Ranvier. Cell Tiss. Res., 148:577–586.

    Article  CAS  Google Scholar 

  • Dermietzel, R., D. Schünke, and A. Leibstein (1978) The oligodendrocytic junctional complex. Cell Tissue Res., 193:61–72.

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Regueira, S.M., and R. Anadón (1995) Fine structure of the medullary lateral line area of Chelon labrosus (Order Perciformes), a nonelectroreceptive teleost. J. Comp. Neurol., 351:429–440.

    Article  PubMed  Google Scholar 

  • Díaz-Regueira, S.M., M. Becerra, and R. Anadón (1992) Light-and electron microscopic study of oligodendrocytes in the lateral line area of the medulla in Chelon labrosus (Teleostei). J. Hirnforsch., 33:477–485.

    PubMed  Google Scholar 

  • Díaz-Regueira, S.M., R. Alvarez-Otero, and R. Anadón (1993) An immunocytochemical and ultrastructural study of a specialized glial region of the medulla oblongata in a teleost, Chelon labrosus. Tiss. Cell, 25:657–668.

    Article  Google Scholar 

  • Eisenbarth, G.S., F.S. Walsh, and M. Nirenberg (1979) Monoclonal antibody to a plasma membrane antigen of neurons. Proc. Natl. Acad. Sci. U.S.A., 76:4913–4917.

    Article  PubMed  CAS  Google Scholar 

  • Eng, L.F., J.J. Vanderhaeghen, A. Bignami, and B. Gerstl (1971) An acidic protein isolated from fibrous astrocytes. Brain Res. 28:351–354.

    Article  PubMed  CAS  Google Scholar 

  • Fan, K., and L. McAlister (1985) Co-culture study of rat neuron-glial interaction: evidence of neuronal in-fluence on myelination. Neurosci. Lett., 59:111–116.

    Article  PubMed  CAS  Google Scholar 

  • Fok-Seang, J., and R.H. Miller (1994) Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord. J. Neurosci. Res., 37:219–235.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, R., A.J. Crang, and W.F. Blakemore (1991) Transplanted type-1 astrocytes facilitate repair of demyelinating lesions by host oligodendrocytes in adult rat spinal cord. J. Neurocytol., 20:420–430.

    Article  PubMed  CAS  Google Scholar 

  • Friede, R., K.H. Hu, and M. Johnstone (1969) Glial footplates in the bowfin. I. Fine structure and chemistry. J. Neuropathol. Exp. Neurol., 28:513–539.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, V.L. Jr., and R.A. Lazzarini (1993) Restricted migration of transplanted oligodendrocytes or their progenitors, revealed by transgenic marker M beta P. J. Neural Transplant Plast., 4:139–146.

    Article  PubMed  Google Scholar 

  • Giulian, D., V. Iwanij, and H. Stuckenbrok (1985) The response of optic tract glia during regeneration of the goldfish visual system. I. Biosynthetic activity within different glial population after transection of retinal ganglion cell axons. Brain Res., 339:87–96.

    Article  PubMed  CAS  Google Scholar 

  • Hajihosseini, M., T.N. Tham, and M. Dubois-Dalcq (1996) Origin of oligodendrocytes within the human spinal cord. J. Neurosci., 16:7981–7994.

    PubMed  CAS  Google Scholar 

  • Hajós, F., and M. Kálmán (1989) Distribution of glial fibrillary acidic protein (GFAP) immunoreactive astrocytes in the rat brain. II. Mesencephalon, rhombencephalon and spinal cord. Exp. Brain Res., 78:164–173.

    Article  PubMed  Google Scholar 

  • Hall, A., N.A. Giese, and W.D. Richardson (1996) Spinal cord oligodendrocytes develop from ventrally derived progenitor cells that express PDGF alpha-receptors. Development, 122:4085–4094.

    PubMed  CAS  Google Scholar 

  • Hardy, R.J., and V.L. Friedrich (1996) Oligodendrocyte progenitors are generated throughout the embryonic mouse brain, but differentiate in restricted foci. Development, 122:2059–2069.

    PubMed  CAS  Google Scholar 

  • Hendon, R.M. (1964) The fine structure of the rat cerebellum. II. The stellate neurons, granule cells and glia. J. Cell. Biol., 23:277–293.

    Article  Google Scholar 

  • Holmqvist, B., T. Östholm, P. Aim, and P. Ekström (1994) Nitric oxide synthase in the brain of a teleost. Neurosci. Lett., 171:205–208

    Article  PubMed  CAS  Google Scholar 

  • Hope, B., G.J. Michael, K.M. Knigge, and S.R. Vincent (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. USA, 88:2811–2814.Horstmann, E. (1954) Die Faserglia des Selachiergehirns. Z. Zeilforsch., 39:588–617.

    Article  PubMed  CAS  Google Scholar 

  • Imamoto, K., J.A. Paterson, and C.P. Leblond (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats. I. Sequential changes in oligodendrocytes. J. Comp. Neurol., 180:115–138.

    Article  PubMed  CAS  Google Scholar 

  • Jeserich, G., and A. Stratmann (1992) In vitro differentiation of trout oligodendrocytes: evidence for an A2B5-positive origin. Develop. Brain Res., 67:27–35.

    Article  CAS  Google Scholar 

  • Jeserich, G., and T.V. Waehneldt (1986) Characterization of antibodies against major fish CNS myelin proteins: immunoblot analysis and immunohistochemical localization of 36K and IP2 proteins in trout nerve tissue. J. Neurosci. Res., 15:147–158.

    Article  PubMed  CAS  Google Scholar 

  • Jeserich, G., A. Müller, and C. Jacque (1990) Developmental expression of myelin proteins by oligodendrocytes in the CNS of trout. Dev. Brain Res., 51:27–34.

    Article  CAS  Google Scholar 

  • Kagawa, T., A. Oba, S. Okumura, and K. Ikenaka (1996) Localization of mRNA for UDP-galactose: ceramide galactosyltransferase in brain during mouse development. Dev. Neurosci., 18:309–318.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann, H., and B.R. Ransom (1988) Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia, 1:64–73.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg H.K., and H. Kettenmann (1990) Swelling-induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes. I. Effects on membrane potentials, input impedance and cell-cell coupling. Brain Res., 529:255–261.

    Article  PubMed  CAS  Google Scholar 

  • Klatzo, I. (1967) Cellular morphology of the lemon shark brain. In P.W. Gilbert, R.F. Mathewson and Rall (eds.): Sharks, skates and Rays. Baltimore: John Hopkins Press, pp. 341–359.

    Google Scholar 

  • Kruger, L., and D.S. Maxwell (1966) The fine structure of ependymal processes in the teleost optic tectum. Am. J. Anat., 119:479–498.

    Article  PubMed  CAS  Google Scholar 

  • Kruger, L., and D.S. Maxwell (1967) Comparative fine structure of vertebrate neuroglia: Teleosts and reptiles. J. Comp. Neurol., 129:115–142.

    Article  Google Scholar 

  • Lara, J.M., J.R. Alonso, E. Vecino, R. Coveñas, and J. Aijon (1989) Neuroglia in the optic tectum of teleosts. J. Hirnforsch., 30:465–462.

    PubMed  CAS  Google Scholar 

  • Lara, J.M., A. Velasco, J.R. Alonso, and J. Aijon (1995) Neuroglia in the CNS of teleosts. In A. Vernadakis and B. Roots (eds.): Neuron-glia interrelations during phylogeny:. I. Phylogeny and ontogeny of glilal cells. Totowa (NJ): Humana Press, pp. 131–156.

    Chapter  Google Scholar 

  • Laufer, M. and H. Vanegas (1974) The optic tectum of a perciform teleost. II. Fine structure. J. Comp. Neurol. 154:61–69.

    Article  PubMed  CAS  Google Scholar 

  • Lázaro, A. (1991) Desarrollo postnatal de la astroglia medular en ratón bianco Apodemus apodemus. Doctoral Thesis. Madrid: Universidad Complutense.

    Google Scholar 

  • Leonhardt, H. (1980) Ependym und circumventriculäre Organe. In A. Oksche, and L. Vollrath (eds): Handbuch der mikroskopischen Anatomie des Menschen, vol 4/10, Neuroglia I. Berlin: Springer, pp 177–666

    Google Scholar 

  • Levine, R.L. (1989) Organization of astrocytes in the visual pathways of the goldfish: an immunocytochemical study. J. Comp. Neurol., 285:231–245.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, P. and P. Rakic (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol. 193:815–840.

    Article  PubMed  CAS  Google Scholar 

  • Ling, E.A. and C. Leblond (1973) Investigation of glial cells in semithin sections. II. Variations with age in the numbers of the various glial cell types in rat cortex and corpus callosum. J. Comp. Neurol. 149:73–82.

    Article  PubMed  CAS  Google Scholar 

  • Ling, E., J.A. Paterson, A. Privat, S. Mori, and C.P. Leblond (1973) Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. J. Comp. Neurol., 149:43–72.Long, D.M., T.S. Bodenheimer, J.F. Hartmann, and I. Klatzo (1968) Ultrastructural features of the shark brain. Am. J. Anat., 122:209–236.

    Article  PubMed  CAS  Google Scholar 

  • Lotan, M., and M. Schwartz (1992) Postinjury changes in platelet-derived growth factor-like activity in fish and rat optic nerves. J. Neurochem., 58:1637–1642.

    Article  PubMed  CAS  Google Scholar 

  • Ludwin, S. (1984) The function of perineuronal satellite oligodendrocytes: an immunohistochemical study. Neuropathol. Appl. Neurobiol., 10:143–149.

    Article  PubMed  CAS  Google Scholar 

  • Ma, P.M. (1993) Tanycytes in the sunfish brain: NADPH-diaphorase histochemistry and regional distribution. J. Comp. Neurol., 336:77–95.

    Article  PubMed  CAS  Google Scholar 

  • Maggs, A., and J. Scholes (1990) Reticular astrocytes in the fish optic nerve: macroglia with epithelial characteristics form an axially repeated lacework pattern, to which nodes of Ranvier are apposed. J. Neurosci., 10:1600–1614.

    PubMed  CAS  Google Scholar 

  • Manso, M.J., M. Becerra, M. Becerra, and R. Anadón (1997) Expression of a low-molecular-weight calcium binding protein (9–10k) in glial cells of the brain of the trout (Teleosts). Anat. Embryol (in press)

    Google Scholar 

  • Marcus, R.C., and S.S. Easter (1995) Expression of glial fibrillary acidic protein and its relation to tract formation in embryonic zebrafish (Danio rerio). J. Comp. Neurol., 359:365–381.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A. and S. Mughal (1975) Immunohistochemical localization of S-100 protein in brain. Nature, 258:746–748.

    Article  PubMed  CAS  Google Scholar 

  • Massa, P. and E. Mugnaini (1982) Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study. Neuroscience, 7:523–538.

    Article  PubMed  CAS  Google Scholar 

  • Monteiro, R. (1983) Do the Purkinje cells have a special type of oligodendrocyte as satellites?. J. Anat., 137:71–83.

    PubMed  Google Scholar 

  • Monzon-Mayor, M., C. Yanes, J.L. James, and R.R. Sturrock (1990) An ultrastructural study of the development of oligodendrocytes in the midbrain of the lizard. J. Anat., 170:43–49.

    PubMed  CAS  Google Scholar 

  • Moore, B.W. (1965) A soluble protein characteristic of the nervous system. Biochem. Biophys. Res. Commun., 6:739–744.

    Article  Google Scholar 

  • Morales, R., and D. Duncan (1975) Specialized contacts of astrocytes with astrocytes and with other cell types in the spinal cord of the cat. Anat. Rec., 182:255–266.

    Article  PubMed  CAS  Google Scholar 

  • Mori, S., and C.P. Leblond (1970) Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats. J. Comp. Neurol., 139:1–30.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E. and F. Walberg (1964) Ultrastructure of neuroglia., Ergeb. Anat. Entwicklungsgesch 37:194–236.

    PubMed  CAS  Google Scholar 

  • Nabeshima, S., T.S. Reese, D.M.D. Landis, and M.W. Brightman (1975) Junctions in the meninges and marginal glia. J. Comp. Neurol., 164:127–170.

    Article  PubMed  CAS  Google Scholar 

  • Noll, E., and R.H. Miller (1993) Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development, 118:563–573.

    PubMed  CAS  Google Scholar 

  • Nona, S.N., S.A.S. Shehab, C.A. Stafford, and J.R. Cronly-Dillon (1989) Glial fibrillary acidic protein (GFAP) from goldfish: its location in visual pathway. Glia, 2:189–200.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, Y., S. Eins and J. Wolff (1985) Oligodendrocytes in the pons and middle cerebellar peduncle of the cat. Topographical relations to neurons and transverse axon bundles. Cell Tiss. Res. 240:541–552.

    Article  CAS  Google Scholar 

  • Ono, K., R. Bansal, J. Payne, U. Rutishauser, and R.H. Miller (1995) Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development, 121:1743–1754.

    PubMed  CAS  Google Scholar 

  • Onteniente, B., H. Kimura, and T. Maeda (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J. Comp. Neurol., 215:427–436.

    Article  PubMed  CAS  Google Scholar 

  • Orentas, D.M. and R.H. Miller (1996) The origin of spinal cord oligodendrocytes is dependent on local influences from the notochord. Dev. Biol., 177:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Parnavelas, J.G., R. Luder, S.G. Pollard, K. Sullivan, and A.R. Lieberman (1983) A qualitative and quantitative ultrastructural study of glial cells in the developing visual cortex of the rat. Phil. Trans. R. Soc. London B, 301:55–84.

    Article  CAS  Google Scholar 

  • Paterson, J.A. (1981) Postnatal development of oligodendrocytes. In S. Fedoroff (ed.): XI International Congress of Anatomy, Part A. Glial and Neuronal Cell Biology. New York: Alan R. Liss, pp. 83–92.

    Google Scholar 

  • Paterson, J.A., A. Privat, E.A. Ling, and C.P. Leblond (1973) Investigation of glial cells in semithin sections. III. Transformation of subependymal cells into glial cells, as shown by radioautography after 3H-thymidine injection into the lateral ventricle of the brain of young rats. J. Comp. Neurol., 149:83–102.

    Article  PubMed  CAS  Google Scholar 

  • Perez, S.E., F. Adrio, M.A. Rodriguez, I. Rodriguez-Moldes, and R. Anadón (1996) NADPH-diaphorase histochemistry reveals oligodendrocytes in the rainbow trout (Teleost). Neurosci. Lett., 205:83–86.

    Article  PubMed  CAS  Google Scholar 

  • Peter, R.E. and Y. Nagahama (1976) Light and electron microscopic study of the structure of the nucleus preopticus and nucleus lateral tuberis of the goldfish Carassius auratus. Can. J. Zool., 54:1423–37.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., K. Josephson, and S.L. Vincent (1991) Effects of aging on neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex. Anat. Rec., 229:384–398.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., S.L. Palay, and H. de F. Webster (1976) Fine Structure of the Nervous System: The Neurons and Supporting Cells. Philadelphia: W. Saunders.

    Google Scholar 

  • Pixley, S. R., and J. De Vellis (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Develop. Brain Res., 15:201–209.

    Article  Google Scholar 

  • Privat, A., M. Giménez-Ribotta, and J.-L. Ridet (1995) Morphology of astrocytes. In H. Kettenmann and B.R. Ramsom (eds.): Neuroglia. New York: Oxford University Press, pp. 3–22.

    Google Scholar 

  • Raamsdonk, W. Van, C. Heyting, C.W. Pool, M.J. Smit-Onel, and J.L. Groen (1984) Differentiation of neurons and radial glia in the spinal cord of the teleost Brachydanio rerio (the zebrafish): An immunocytochemical study. Int. J. Dev. Neurosci., 2:471–481.

    Article  Google Scholar 

  • Raff, M.C. R.H. Miller, and M. Noble (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature, 303:390–396.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P. (1971a) Guidance of neurons migrating to the fetal monkey neocortex. Brain Res., 33:471–476.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P. (1971b) Neuron-glia relatioship during granule cell migration in developing cerebellar cortex: a Golgi and electron-microscopic study in Macacus rhesus. J. Comp. Neurol., 141:283–312.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol., 145:61–84.

    Article  PubMed  CAS  Google Scholar 

  • Ransom, B.R., and H. Kettenmann (1990) Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia, 3:258–266.

    Article  PubMed  CAS  Google Scholar 

  • Remahl, S., and C. Hildebrand (1990) Relation between axons and oligodendroglial cells during initial myelination. I. The glial unit. J. Neurocytol., 19:313–328.

    Article  PubMed  CAS  Google Scholar 

  • Rio Hortega, P. del (1919) El tercer elemento de los centros nerviosos. Bol. Soc. Esp. Biol., 9:68–83.

    Google Scholar 

  • Rio Hortega, P. del (1921) Estudios sobre la neuroglia. La glía de escasas radiaciones (Oligodendroglia). Bol. Real Soc. Esp. Hist. Nat., 21:63–92.

    Google Scholar 

  • Rio Hortega, P. del (1928) Tercera aportación al conocimiento morfológico e interpretación funcional de la Oligodendroglia. Mem. Real Soc. Esp. Hist. Nat., 14:5–122.

    Google Scholar 

  • Roots, B.I. (1978) A phylogenetic approach to the anatomy of glia. In “Dynamic Properties of Glial Cells” (E. Schoffeniels, B. Franck, L. Hertz and D.B. Towers, eds.) Pergamon. New York. pp. 45–54

    Google Scholar 

  • Rubio, M., I. Suárez, G. Bodega, and B. Fernández (1992) Glial fibrillary acidic protein and vimentin immunohistochemistry in the posterior rhombencephalon of the Iberian barb (Barbus comiza). Neurosci. Lett., 134:203–206.

    Article  PubMed  CAS  Google Scholar 

  • Scherer-Singler, U., S.R. Vincent, H. Kimura, and E.G. McGeer (1983) Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J. Neurosci. Meth., 9:229–234.

    Article  CAS  Google Scholar 

  • Schnitzer, J., W. Franke and M. Schachner (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J. Cell Biol., 90:435–47.

    Article  PubMed  CAS  Google Scholar 

  • Sivron, T., I. Cohen, and M. Schwartz (1994) Intermediate filaments reminiscent of immature cells expressed by goldfish (Carassius auratus) astrocytes and oligodendrocytes in vitro. Cell Tiss. Res., 275:327–337.

    Article  Google Scholar 

  • Stensaas, L.J., and S.S. Stensaas (1968) Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. II. Electron microscopy. Z. Zellforsch., 86:184–213.

    Article  PubMed  CAS  Google Scholar 

  • Stensaas, L (1977) The ultrastructure of astrocytes, oligodendrocytes, and microglia in the optic nerve of urodele amphibians (A. punctatum, T. pyrrhogaster, T. viridescens). J. Neurocytol., 6:269–286.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, J.A., and M.G. Yoon (1982) Morphology of radial glia, ependymal cells, and periventricular neurons in the optic tectum of goldfish (Carassius auratus). J. Comp. Neurol., 205:128–138.

    Article  PubMed  CAS  Google Scholar 

  • Suárez Nájera, I., B. Fernández Ruiz and L. M. García Segura (1980) Specialized contacts of astrocytes with astrocytes and with other cell types in the hypothalamus of the hamster. J. Anat., 130:55–61.

    Google Scholar 

  • Szuchet, S. (1995) The morphology and ultrastructure of oligodendrocytes and their functional implications. In H. Kettenmann and B.R. Ramsom (eds.): Neuroglia. New York: Oxford University Press, pp. 23–43.

    Google Scholar 

  • Szuchet, S., S.H. Yim, and S. Monsma (1983) Lipid metabolism of isolated oligodendrocytes maintained in long-term culture mimics events associated with myelinogenesis. Proc. Natl. Acad. Sci. USA., 80:7019–23.

    Article  PubMed  CAS  Google Scholar 

  • Szuchet, S., P.E. Polak, and S.H. Yim (1986) Mature oligodendrocytes cultured in the absence of neurons recapitulate the ontogenic development of myelin. Dev. Neurosci., 8:208–221.

    Article  PubMed  CAS  Google Scholar 

  • Tabira, T., M. Cullen, P.J. Reier, and H. de F. Webster (1978) An experimental analysis of inter-lamellar tight junctions in amphibian and mammalian C.N.S. myelin. J. Neurocytol., 7:489–503.

    Article  PubMed  CAS  Google Scholar 

  • Tani, E., T. Itagaki, and M. Nakano (1977) Tight junctions of oligodendrocytes. Cell Tiss. Res. 184:139–42.

    CAS  Google Scholar 

  • Tapp, R.L. (1973) The structure of the optic nerve of the teleost Eugerres plumieri. J. Comp. Neurol., 150:239–252.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, E., and A. E. Pearse (1961) The fine localization of dehydrogenases in the central nervous system. Histochemistry, 2:266–282.

    Article  CAS  Google Scholar 

  • Vaughan, D.W. (1984) The structure of neuroglial cells. In E.G. Jones and A. Peters, (Eds.): Cerebral Cortex, Vol. 2. New York: Plenum, pp. 285–329.

    Chapter  Google Scholar 

  • Vaughan, D.W., and A. Peters (1974) Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscopic study. J. Neurocytol., 3:405–429.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn. J. (1969) An electron microscopic analysis of gliogenesis in rat optic nerve. Z. Zellforsch., 94:293–327.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, J.E., and A. Peters (1968) A third neuroglial cell type: an electron microscopic study. J. Comp. Neurol., 133:269–288.

    Article  PubMed  CAS  Google Scholar 

  • Vaysse, P-J., and J.E. Goldman (1990) A clonal analysis of glial lineages in neonatal forebrain development in vitro. Neuron, 5:227–235.

    Article  PubMed  CAS  Google Scholar 

  • Verity, A.N., and A.T. Campagnoni (1988) Regional expression of myelin protein genes in the developing mouse brain: in situ hybridization studies. J. Neurosci. Res., 21:238–248.

    Article  PubMed  CAS  Google Scholar 

  • Villani, L., and T. Guarnieri (1995) Ultrastructural localization of NADPH-diaphorase in the goldfish brain. Brain Res., 705:332–336.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S., O. Johansson, T. Hökfelt, L. Skirboll, R Elde, L. Terenius, J. Kimmel, and M. Goldstein (1983) NADPH-diaphorase: selective histochemical marker for striatal neurons containing both somatostatin and avian pancreatic polypeptide (APP)-like immunoreactivities. J. Comp. Neurol., 217:252–263.

    Article  PubMed  CAS  Google Scholar 

  • Warf, B.C., J. Fok-Seang, and R.H. Miller (1991) Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J. Neurosci., 11:2477–2488.

    PubMed  CAS  Google Scholar 

  • Wolburg, H., R. Kästner, and G. Kurz-Isler (1983) Lack of orthogonal particle assemblies and presence of tight junctions in astrocytes of the goldfish (Carassius carassius). Cell Tissue Res., 234:389–402.

    Article  PubMed  CAS  Google Scholar 

  • Zamora, A. and M. Mutin (1988) Vimentin and glial fibrillary acidic protein filaments in radial glia of the adult urodele spinal cord. Neuroscience, 27:279–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Díaz-Regueira, S.M., Anadón, R. (1998). The Macroglia Of Teleosts: Characterization, Distribution and Development. In: Castellano, B., González, B., Nieto-Sampedro, M. (eds) Understanding Glial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5737-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5737-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7628-6

  • Online ISBN: 978-1-4615-5737-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics