Skip to main content

Glial Changes in Aging and Alzheimer’s Disease

  • Chapter
Book cover Understanding Glial Cells

Abstract

Glial changes were studied in autopsied brains from 10 neurologically normal subjects (4 young to mature and 6 elderly individuals), and 7 Alzheimer’s disease patients. Cortices from hippocampal and parahippocampal regions, as well as temporopolar, insular, and frontal areas, were selected. Single and double immunocytochemical techniques were used, with antibodies recognizing both activated astrocytes and microglia, as well as AßP amyloid and a protein present in neurofibrillary degeneration. Counterstaining with thioflavine-S was also employed to visualize the degree of maturation of senile plaques. Thionin counterstaining allowed to distinguish whether neurofibrillary tangles were extracellular ones. A semi-quantification of medium densities of activated and reactive glial cells was systematically done in all cases. While glial reactivity was found to increase in a moderate way as age advances, it appeared dramatically increased in all Alzheimer’s disease patients, whatever their age. A non-demented individual with abundant senile plaques and neurofibrillary degeneration in hippocampus and parahippocampal cortices, presented an intermediate glial reactivity as compared with that of all of the other controls and the Alzheimer’s disease brains. Activated astrocytes and microglial cells were seen to associate with senile plaques in a direct proportion with the degree of cytotoxicity of every plaque, as demonstrated for the number of neuntes with neurofibrillary degeneration. A highest glial reactivity was also found around extracellular neurofibrillary tangles, as well as related with blood vessels. All of these neuropathological signs eliciting glial reactivity, represent inflammatory focuses, that might become targets for a future treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allsop, D., S.I. Haga, C. Haga, S.I. Ikeda, D.M.A. Mann and T. Ishii (1989) Early senile plaques in DS brains show a close relationship with cell bodies of neurons. Neuropathol. Appl. Neurobiol. 15:531–542.

    Article  PubMed  CAS  Google Scholar 

  • Araujo, D.M. and C.W. Cotman (1992) β-Amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res. 569:141–145.

    Article  PubMed  CAS  Google Scholar 

  • Arriagada, P.V., K. Marzloff and B.T. Hyman (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688.

    Article  PubMed  CAS  Google Scholar 

  • Ball, M. (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with aging and dementia: A quantitative study. Acta Neuropathol. 37:111–118.

    Article  PubMed  CAS  Google Scholar 

  • Bancher, C., C. Brunner, H. Lassmann, H. Budka, K. Jellinger, G. Wiche, F. Seitelberger, I Grundke-Iqbal, K Iqbal and H. M. Wisniewski (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 477:90–99.

    Article  PubMed  CAS  Google Scholar 

  • Beach, T.G., R. Walker and E.G. McGeer (1989) Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2:420–436.

    Article  PubMed  CAS  Google Scholar 

  • Bignami, A. and D. Dahl (1974) Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial acidic protein. J. Comp. Neurol., 153:27–38.

    CAS  Google Scholar 

  • Blessed, G., B.E. Tomlinson and M. Roth (1968) The association between quantitative measurements of dementia and senile changes in the cerebral gray matter of elderly subjects. Br.J. Psychiat. 114:797–811.

    Article  CAS  Google Scholar 

  • Braak, E., H. Braak and E.-M. Mandelkow (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol. 87:554–567.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H. and E. Braak (1986) Ratio of pyramidal cells versus non-pyramidal cells in the frontal isocortex and changes in ratio with ageing and Alzheimer’s disease. Prog. Brain Res. 70: 185–212.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H. and E. Braak (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82:239–259.

    Article  PubMed  CAS  Google Scholar 

  • Breitner, J.C.S. (1996) Inflammatory processes and antiinflammatory drugs in Alzheimer’s disease: A current appraisal. Neurobiol. Aging 17:789–794.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, A.F., P.W. Carpenter and W.R. Markesbery (1993) Morphometric analysis of microglia in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 52:601–608.

    Article  PubMed  CAS  Google Scholar 

  • Castellano, B. and B. González (1991) ¿Es la enfermedad de Alzheimer el resultado de una reacción inmunológica mediada por lascélulas gliales? En F. Bermejo and N. Acarin (eds): Dementias. Inicio de una Década ¿Los Años del Progreso? Barcelona, N.C.R. pp.3–15.

    Google Scholar 

  • Chen, S., R.C.A. Frederickson and K.R. Brunden (1996) Neuroglial-mediated immunoinflammatory responses in Alzheimer’s disease. Complement activation and therapeutic approaches. Neurobiol. Aging 5:781–787.

    Article  Google Scholar 

  • Corder, E.H., A.M. Saunders, N.J. Risch, W.J. Strittmatter, D.E. Schmechel, P.C. Gaskell, J.B. Rimmler, P.A. Locke, P.M. Conneally, K.E. Schmader, G.W. Small, A.D. Roses, J.L. Haines and M.A. Pericak-Vance (1994) Apolipoprotein E type 2 allele decreases the risk of late-onset Alzheimer’s disease. Nat. Genet. 7:180–183.

    Article  PubMed  CAS  Google Scholar 

  • Cotman C.W. and A.J. Anderson (1995) A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol. Neurobiol. 10:19–45.

    Article  PubMed  CAS  Google Scholar 

  • Cras, P., M. Kawai, S. Siedlak and G. Perry (1991) Microglia are associated with the extracellular neurofibrillary tangles of Alzheimer disease. Brain Res. 558: 312–314.

    Article  PubMed  CAS  Google Scholar 

  • Crystal, H., D. Dickson, P. Fuld, D. Masur, R. Scott, M. Mehler, J. Masdeu, C. Kawas, M. Aronson and L. Wolfson (1988) Clinico-pathologic studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38: 1682–1687.

    Article  PubMed  CAS  Google Scholar 

  • del Rio Hortega, P.(1932) Microglia. In W. Penfield (ed.): Cytology and Cellular Pathology of the Nervous System, vol.2, New York: Paul B. Hoeber, pp.481–534.

    Google Scholar 

  • Delacourte, A. (1990) General and dramatic glial reaction in Alzheimer brains. Neurology 40:33–37.

    Article  PubMed  CAS  Google Scholar 

  • Delaère, P., C. Duyckaerts, C. Masters, K. Beyreuther, F. Piette and J.J. Hauw (1990) Large amounts of neocortical βA4 deposits without neuritic plaques nor tangles in a psychometrically assessed, non demented person. Neurosci. Lett. 166:87–93.

    Article  Google Scholar 

  • Duffy, P.E., M. Rapport and L. Graf (1980) Glial fibrillary acidic protein and Alzheimer-type senile dementia. Neurology, 30:778–782.

    Article  PubMed  CAS  Google Scholar 

  • Duyckaerts, C., P. Delaère, J.-J. Hauw. A.L. Abbamondi-Pinto, S. Sorbi, I. Allen, J.P. Brion, J. Flament-Durand, L. Duchen, J. Kauss, W. Schote, J. Lowe, A. Probst, R. Ravid, D.F. Swaab, K. Renkawek and B. Tomlinson (1990) Rating of lesions in senile dementia of the Alzheimer type: Concordance between laboratories. A European multicenter study under the auspices of EURAGE. J. Neurol. Sci. 97:295–323.

    CAS  Google Scholar 

  • Eikelenboom, P. and F.C. Stam (1982) Immunoglobulins and complement factors in senile plaques. Acta Neuropathol. (Berlin). 57:239–242.

    Article  CAS  Google Scholar 

  • Eikelenboom, P. and Veerhuis (1996) The role of complement and activated microglia in the pathogenesis of Alzheimer’s disease. Neurobiol. Aging 17:673–680.

    Article  PubMed  CAS  Google Scholar 

  • Frei, K., C. Siepl., P. Groscurth., S. Bodmer., C. Schwerdel and A. Fontana (1987) Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur. J. Immunol. 17:1271–1278.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, P.H., M. Stones and B.E. Tomlinson (1976) Senile changes in the human neocortex and hippocampus compared by the use of electron and light microscope. J. Neurol. Sci. 27:389–405.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D. (1987) Ameboid microglia as effectors of inflammation in the central nervous system. J. Neurosci. Res. 18:155–171.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D. and L. B. Lachman (1985) Interleukin-1 stimulation of astroglial proliferation after brain injury. Science 223:497–499.

    Article  Google Scholar 

  • Giulian, D., J. Chen., J. E. Ingerman., J. K. George and M. Naponen (1989) The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J. Neurosci. 9:4416–4429.

    PubMed  CAS  Google Scholar 

  • Giulian, D., T. J. Baker., L.-C. N. Shih, and L. B. Lachman (1986) Interleukin-1 of the central nervous system is produced by ameboid microglia. J. Exp. Med. 164:594–604.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Isla, T., J.L. Price, D.W. Mckeel, J.C. Morris, J.H. Growdon and B.T. Hyman (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16:4491–4500.

    PubMed  Google Scholar 

  • Gómez-Ramos, P., A. Jiménez., J.L. Cebrián, M.A. Morán (1993) Importancia de la degeneración neurofibrilar en el diagnóstico de la enfermedad de Alzheimer. Med. Clin. (Barc.) 101:60–63.

    Google Scholar 

  • Graeber, M.B. and W.J. Streit (1990) Perivascular microglia defined. Trends Neurosci. 13:366.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, A. and H.M. Zimmerman (1962) Alzheimer’s neurofibrillary changes. A topagraphic study. Arch. Neurol. 7:227–242.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, B., G. Van Hoesen, L. Kromer, A. Damasio, C. Barns (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 255:1168–70.

    Article  Google Scholar 

  • Iqbal, K., I. Grundke-Iqbal and H.M. Wisniewski (1987) Alterations in the neuronal cytosketeton in Alzheimer’s disease and related conditions. In G. Perry (ed): Alterations in the neuronal cytoskeleton in Alzheimer disease, New York: Plenum Press, pp. 109–136.

    Chapter  Google Scholar 

  • Katzman, R., R. Terry, R. De Teresa, T. Brown, P. Davies, P. Fuld, X. Renbing and A. Peck (1988) Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Ann. Neurol. 23:138–144.

    Article  PubMed  CAS  Google Scholar 

  • Kawamata, T. I. Tooyama, T. Yamata, D.G. Walker and P.L. McGeer (1993) Lactotransferrin immunocytochemistry in Alzheimer and normal brain. Am. J. Pathol. 142:1574–1585.

    PubMed  CAS  Google Scholar 

  • Kemper, T. (1984) Neuroanatomical and neuropatho-logical changes in normal aging and in dementia. In M.L. Albert (ed): Clinical Neurology of Aging, New York: Oxford University Press. pp.9–52.

    Google Scholar 

  • Khachaturian, Z. S. (1985) Diagnosis of Alzheimer’s disease. Arch. Neurol. 42:1097–1105.

    Article  PubMed  CAS  Google Scholar 

  • Kidd, M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature, Lond. 197:192–193.

    Article  CAS  Google Scholar 

  • Killackey, H. P. (1984) Glia and the elimination of transient cortical projections. Trends. Neurosci. 7:225–226.

    Article  Google Scholar 

  • Kim, K.S., D.L. Miller, V.J. Sapienza, C.J. Chen, C. Bai, I. Grundke-Iqbal, J. R. Currie and H.M. Wisniewski (1988) Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci. Res. Commun. 2:121–130.

    CAS  Google Scholar 

  • Kimelberg, H.K. and M.D. Norenberg (1989) Astrocytes. Sci. Am. 260:44–52.

    Google Scholar 

  • Lassmann, H., F. Zimprich., K. Vass and W. F. Hickey (1991) Microglial cells are a component of the perivascular glia limitans. J. Neurosci. Res. 28:236–243.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D.A., M.J. Campbell, G.W. Huntley, D.L. Benson, R.D. Terry and J.H. Morrison (1986) Laminar and regional specificity of tangle and plaque distribution in Alzheimer’s disease (AD): A quantitative study of visual and auditory cortices. Soc. Neurosci. Abst. 12:943.

    Google Scholar 

  • Ling, E.-A. and W.-C. Wong (1993) The origin and nature of ramified and amoeboid microglia: A historical review and current concepts. Glia 7:9–18.

    Article  PubMed  CAS  Google Scholar 

  • Lorton D., J.-M. Kocsis, L. King, K. Madden and K.R. Brunden (1996) β-amyloid induces increased release of interleukin-1β from lipopolysaccharide-activated human monocytes. J. Neuroimmunol. 67:21–29.

    PubMed  CAS  Google Scholar 

  • Lue, L.-F, L. Brachova, W.H. Civin and J. Rogers (1996) Inflammation, Aβ deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathol. Exp. Neurol. 55:1083–1088.

    PubMed  CAS  Google Scholar 

  • Lue, L.-F. and J. Rogers (1992) Full complement activation fails in diffuse plaques of Alzheimer’s disease cerebellum. Dementia 3:308–313.

    Google Scholar 

  • Mackenzie, I.R.A., C.J. Hao and D.G. Muñoz (1995) Role of microglia in senile plaque formation. Neurobiol. Aging 16: 797–804.Role of microglia in senile plaque formation. Neurobiol. Aging 16:797–804.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, I.R.A., R.S. McLachlan, C.S. Kubu and L.A. Miller (1996) Prospective neuropsychological assessment of nondemented patients with biopsy proven senile plaques. Neurology 46:425–429.

    Article  PubMed  CAS  Google Scholar 

  • Mattiace, L.A., P. Davies and D.W. Dickson (1990) Detection of HLA-DR on microglia in the human brain as a function of both clinical and technical factors. Am. J. Pathol. 136:1101–1114.

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., H. Akiyama, S. Itagaki, and E.G. McGeer (1989) Immune system response in Alzheimer’s disease. Can. J. Neurol. Sci. 16:516–527.

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., S. Itagaki and E.G. McGeer (1988) Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol. 76:550–557.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P.L., T. Kawamata, D.G. Walker, H. Akiyama, I. Tooyama and E.G. McGeer (1993) Microglia in degenerative neurological disease. Glia, 7:84–92.

    Article  PubMed  CAS  Google Scholar 

  • McKee, A.C., K.S. Kosik and N.W. Kowal (1991) Neuritic pathology and dementia in Alzheimer’s disease. Ann. Neurol. 30:156–165.

    Article  PubMed  CAS  Google Scholar 

  • Morán, M.A., J.L. Cebrián, P. Gómez-Ramos, A. Cabello, S. Madero and E.J. Mufson (1992) Diagnóstico de la enfermedad de Alzheimer. Valoración de las placas seniles de tipo difuso. Med. Clin.(Barc.) 98:19–23.

    Google Scholar 

  • Morishima-Kawashima, M., M. Hasegawa, K. Takio, M. Suzuki, K. Tatani and Y. Ihara (1993) Ubiquitin conjugated with amino-terminally processed tau in paired helical filaments. Neuron 10:1151–1160.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro, M., R.P. Saneto, J. de Vellis and C.W. Cotman (1985) The control of glial populations in brain: Changes in astrocyte mitogenic and morphogenic factors in response to injury. Brain Res. 343:320–328.

    Article  PubMed  CAS  Google Scholar 

  • Pappolla, M.A., R.A. Omar and H.V. Vinters (1991) Image analysis microspectroscopy shows that neurons participate in the genesis of a subset of early primitive (diffuse) senile plaques. Am. J. Pathol. 139:599–607.

    PubMed  CAS  Google Scholar 

  • Pereira, H.A., P. Kumar and P. Grammas (1996) Expression of CAP37, a novel inflammarory mediator, in Alzheimer disease. Neurobiol. Aging 17:753–759.

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter, L.S., S.A. Scott and H.C. Chui (1991) The role of microglia in the cortical neuropathology of Alzheimer disease. Bull. Clin. Neurosci. 56: 120–130.

    Google Scholar 

  • Perlmutter, L.S., S.A. Scott, E. Barrón and H. C. Chui (1992) MHC class II-positive microglia in human brain: association with Alzheimer lesions. J. Neurosci. Res. 33:549–558.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., S.L. Palay and H. de F. Webster (1991). In: The Fine Structure of the Nervous System, New York: Oxford University Press, pp.273–311.

    Google Scholar 

  • Pike, C.J., B.J. Cummings and C.W. Cotman (1995) Contributions of β-amyloid to reactive astrocytosis in Alzheimer’s disease. In K. Iqbal, J.A. Mortimer, B. Winblad and H.M. Wisniewski (eds): Research Advances in Alzheimer’s Disease and Related Disorders. Sussex: John Wiley & Sons Ltd, pp.619–627.

    Google Scholar 

  • Pike, C.J., B.J. Cummings, R. Monzavi and C.W. Cotman (1994) β-Amyloid-induced changes in cultured astrocytes parallel reactive astrocytosis associated with senile plaques in Alzheimer’s disease. Neuroscience 63:517–531.

    Article  PubMed  CAS  Google Scholar 

  • Pitas, R.E., J.K. Boyles, S.H. Lee, D. Foss and R.W. Mahley (1987) Astrocytes synthesize apolipo-protein E and metabolize apolipopropein E-containing lipoproteins. Biochem. Biophys. Acta, 917:148–161.

    Article  PubMed  CAS  Google Scholar 

  • Probst, A., D. Langui, S. Ipsen, N. Robakis and J. Ulrich (1991) Deposition of β/A4 protein along neuronal plasma membranes in diffuse senile plaques. Acta Neuropathol. 83:21–29.

    Article  PubMed  CAS  Google Scholar 

  • Probst, A., J. Ulrich and U. Heitz (1982) Senile dementia of Alzheimer type: Astroglial reaction to extracellular neurofibrillary tangles in the hippocampus. Acta Neuropathol.(Berl) 57:75–79.

    Article  CAS  Google Scholar 

  • Riederer, B.M., A. Guadaño-Ferraz and G.M. Innocenti (1990) Difference in distribution of microtubule associated proteins 5a and 5b during the development of cerebral cortex and corpus callosum of cats: dependence on phosphorylation. Dev. Brain Res. 56:235–243.

    Article  CAS  Google Scholar 

  • Rogers, J., S. Webster, L.-F. Lue, L. Brachova, W.H. Civin, M. Emmerling, B. Shivers, D. Walker and P. McGeer (1996) Inflammation and Alzheimer’s disease pathogenesis. Neurobiol. Aging 17:681–686.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M.L., R.E. Gur, R.C. Gur and J.Q. Trojanowski (1988) Intraneuronal and extracellular neurofibrillary tangles exhibit mutually exclusive cytoskeletal antigens. Ann. Neurol. 23:184–189.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D.J. (1989) Molecular pathology of amyloidogenic proteins and the role of vascular amyloidosis in Alzheimer’s disease. Neurobiol. Aging 10:387–395.

    Article  PubMed  CAS  Google Scholar 

  • Siman, R., J.P. Card, R.B. Nelson and L.G. Davis (1989) Expression of β-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron 3:275–285.

    Article  PubMed  CAS  Google Scholar 

  • Singhrao, S.K., B.P. Morgan, J.W. Neal and G.R. Newman (1995) A functional role of corpora amylacea based on evidence from complement studies. Neurodegeneration 4:335–345.

    Article  PubMed  CAS  Google Scholar 

  • Streit, W. J., M. B. Graeber and G. W. Kreutzberg (1988) Fuctional plasticity of microglia: A review. Glia 1:301–307.

    Article  PubMed  CAS  Google Scholar 

  • Terry, R.D. (1992) The pathogenesis of Alzheimer’s disease. What causes dementia? In Y. Christen and P. Churchland (eds): Neurophilosophy and Alzheimer’s Disease, Research and Perspectives in Alzheimer’s Disease. Berlin: Springer-Verlag, pp. 123–130.

    Chapter  Google Scholar 

  • Thomas, W. E. (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res. Rev. 17:61–74.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, B.E., G. Blessed and M. Roth (1968) Observations on the brain of non-demented old people. J. Neurol. Sci. 7:331–356.

    Article  PubMed  CAS  Google Scholar 

  • Ulloa, L., E. Montejo de Garcini, P. Gómez-Ramos, M. A. Morán and J. Avila (1994) Microtubule-associated protein MAP-1B showing a fetal phosphorylation pattern is present in sites of neurofibrillary degeneration in brains of Alzheimer’s disease patients. Mol.Brain Res. 26:113–122.

    Article  PubMed  CAS  Google Scholar 

  • Wallin, A., K. Blennow and L.E. Rosengren (1996) Glial fibrillary acidic protein in the cerebrospinal fluid of patients with dementia. Dementia 7:267–272.

    PubMed  CAS  Google Scholar 

  • Wang, D. and D.G. Muñoz (1995) Qualitative and quantitative differences in senile plaque dystrophic neuntes of Alzheimer’s disease and normal aged brain. J. Neuropathol. Exp. Neurol. 54:548–556.

    Article  PubMed  CAS  Google Scholar 

  • Wegiel, J., H.M. Wisniewski, K.C. Wang, M. Kujawa and B. Lanch (1988) The role of microglia in plaque formation in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. (Abst.) 47:338.

    Google Scholar 

  • West, M.J., P.D. Coleman, D.G. Flood and J.C. Troncoso (1994) Differences in the pattern of hippo-campal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet 344:769–772.

    Article  CAS  Google Scholar 

  • Wilcock, G.K. and M.M. Esiri (1982) Plaque, tangles and dementia: a quantitative study. J. Neurol. Sci. 56:343–56.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, H.M. and J. Wegiel (1992) Alzheimer’s disease neuropathology. Current status of interpretation of lesion development. Physiopathol. Proc. 673:270–284.

    CAS  Google Scholar 

  • Wisniewski, H.M., J. Wegiel, K.C. Wang, M. Kujawa and B. Lach (1989) Ultrastructural studies of the cells forming amyloid fibers in classical plaques. Can. J. Neurol. Sci. 16:535–542.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, H., S. Harai, M. Moritatsu, M. Shoji and Y. Harigaya (1988) Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathol (Berl) 77: 113–119.

    CAS  Google Scholar 

  • Yamaguchi, H., Y. Nakazato, S. Harai, M. Shoji, and Y. Harigaya (1989) Electron micrograph in the Alzheimer brain. Am. J. Pathol. 135:593–597.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, H., Y. Nakazato, M. Shoji, K. Okamoto, Y. Ihara, M. Morimatsu, and S. Hirai (1991) Secondary deposition of beta amyloid within extracellular neurofibrillary tangles in Alzheimer-type dementia. Am. J. Pathol. 138:699–705.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morán, M.A., Gómez-Ramos, P. (1998). Glial Changes in Aging and Alzheimer’s Disease. In: Castellano, B., González, B., Nieto-Sampedro, M. (eds) Understanding Glial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5737-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5737-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7628-6

  • Online ISBN: 978-1-4615-5737-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics