Skip to main content

Abstract

Sols and gels are two forms of matter that have been known to exist naturally for a long time. They include various materials such as ink, clays, and a number of other substances such as the eye vitrea, blood, serum, and milk [1]. Sols and gels have arose scientific interests for a long time. The oldest sols prepared in a laboratory were synthesized with gold by Faraday in 1853. They are still stable nowadays[2]. It was not until 1861 that Graham founded colloidal science. Since then the study of ceramic colloidal sols has been slowly progressing so that the manner in which the sols forms and their sensibility to a number of different factors are now starting to be understood. It is only since recently that we can control the size of particles with inorganic salts [2,3]. Similarly, it has been necessary to achieve a good understanding of the nature of sols and of the laws explaining their behaviors before synthesizing well-defined particle dispersions. A major contribution in the understanding of sols chemistry came from the DLVO or electrostatic theory. This theory was particularly the first one to distinguish a precipitate from a stable colloidal suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Livage J., Lemerle J., Ann. Rev. Mater. Sci. 12 (1982) 103–122.

    Article  CAS  Google Scholar 

  2. Matijevic E., “Monodisperse colloids (Preparation, Properties and Applications), and interactions in mixed colloidal systems (heterocoagulation, adhesion and microflotation)”. Conference presented at the Université de Bordeaux I, France, 9-10 June 1987.

    Google Scholar 

  3. Roy R., J. Amer. Ceram. Soc. 39 (1956) 145.

    Article  CAS  Google Scholar 

  4. Iler R.K., “The Chemistry of Silica”, Wiley, New-York (1979).

    Google Scholar 

  5. Ebelmen M., Ann. Chim. Phys, 15 (1845) 319

    Google Scholar 

  6. Ebelmen M., Ann. Chim. Phys, 16 (1846) 129

    Google Scholar 

  7. Ebelmen M., Compte Rendus de l’Acd. des Sciences 25 (1947) 854.

    Google Scholar 

  8. Cossa A., Il Nuovo Cimento 3 (1870) 228–230.

    Google Scholar 

  9. Kistler S.S., Nature, 127 (1931) 741.

    Article  CAS  Google Scholar 

  10. Stock A., Somieski K., Ber. dt. Chem. Ges. 54 (1921) 740–758.

    Article  Google Scholar 

  11. Corma A., Chem. Rev. 97 (1997) 2373–2419.

    Article  CAS  Google Scholar 

  12. Sanchez C., Ribot F., New J. Chem., 18 (1994) 1007–1047.

    CAS  Google Scholar 

  13. Tohge N., Moore G.S., Mackenzie J.D., J. Non-Cryst. Solids 63 (1984) 95–103.

    Article  CAS  Google Scholar 

  14. Gitzen W.H., “Alumina as a Ceramic Material”, the American Ceramic Society, Columbus, Ohio (1970).

    Google Scholar 

  15. Flory P.J., J. Am. Chem. Soc. 63 (1941) 3083–3100.

    Article  CAS  Google Scholar 

  16. Hammersley J.M., Proc. Cambridge Phil. Soc. 53 (1957) 642–645.

    Article  CAS  Google Scholar 

  17. Mandelbrot B.B., “Fractals: Form, Chances and Dimensions”, Freeman, San Francisco (1977).

    Google Scholar 

  18. Ford R.W., “Drying”, Institute of ceramics, Textbook series; MacLaren and Sons, London, England (1964).

    Google Scholar 

  19. Matijevic E., Acc. Chem. Res. 14 (1981) 22–29.

    Article  CAS  Google Scholar 

  20. Mazdiyasni K.S., Lynch C.T., Smith II J.S., J. Am. Ceram. Soc. 48 (1965) 372–375.

    Article  CAS  Google Scholar 

  21. Wheat T.A., J. Canad. Ceram. Soc. 46 (1977) 11–18.

    CAS  Google Scholar 

  22. Hiemenz P.C., “Principles of Colloid and Surface Chemsitry”, Marcel Dekker, New-York (1977).

    Google Scholar 

  23. Flory J.P., Disc. Faraday soc., 57 (1974) 7–8.

    Article  CAS  Google Scholar 

  24. Flory J.P., “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, New-York (1953).

    Google Scholar 

  25. Seyferth D., Wiseman G.H., in “Ultrastructure Processing of ceramics, Glasses and Composites”, Edited by Hench L.L. and Ulrich D.R., Wiley, New-York (1984) 265–271.

    Google Scholar 

  26. Dislich H., J. of Non-Crystalline Solids 57 (1983) 371–388.

    Article  CAS  Google Scholar 

  27. Segal D.L., J. Non-Crystalline Solids 63 (1984) 183–191.

    Article  CAS  Google Scholar 

  28. Mazdiyasni K.S., Ceramics International 8 (1982) 42–56.

    Article  CAS  Google Scholar 

  29. Zelinski B.J.J., Uhlmann D.R., J. Phys. Chem. Solids 45 (1984) 1069–1090.

    Article  CAS  Google Scholar 

  30. Haertling G.H., Land C.E., Ferroelectrics 3 (1972) 269–280.

    Article  CAS  Google Scholar 

  31. Sapieszko R.S., Matijevic E., Corrosion 36 (1980) 522–530.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pierre, A.C. (1998). General Introduction. In: Introduction to Sol-Gel Processing. The Kluwer International Series in Sol-Gel Processing: Technology and Applications, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5659-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5659-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8121-1

  • Online ISBN: 978-1-4615-5659-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics