Skip to main content

Mechanisms of thyroid hormone control over sensitivity and maximal contractile responsiveness to β-adrenergic agonists in atria

  • Chapter
Bioenergetics of the Cell: Quantitative Aspects

Abstract

This paper discusses the mechanisms of two basic effects of thyroid hormones on atrial responses to β-adrenergic agonists, i.e. increased inotropic sensitivity and decreased maximal contractile responsiveness. The increased sensitivity of atria to β; adrenergic agonists under thyroid hormones appears to be related to increases in β-adrenoceptor density and Gs/Gi. protein ratio, leading to activation of Gs-mediated pathway, but suppression of Gi.-mediated pathway of adenylate cyclase regulation. Therefore, the i/c concentrations of cAMP and corresponding inotropic responses achieve their maximums at lower doses of β-adrenergic agonist. Thyroid hormones also decrease the expression of phospholamban, but increase the expression of sarcoplasmic reticulum Ca2+-pump. As a result, the basal activity of sarcoplasmic reticulum Ca2+-pump increases, but its β-adrenergic activation through phosphorylation of phospholamban decreases. It is suggested that these changes are causal for decreased maximal inotropic and lusitropic responses of atria to β-adrenergic agonists.(Mol Cell Biochem 184: 419–426, 1998)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karczewski P, Bartel S, Krause EG: Protein phosphorylation in the regulation of cardiac contractility and vascular smooth muscle tone. Curr Opin Nephrol Hypertens 2:33–40, 1993

    Article  PubMed  CAS  Google Scholar 

  2. Bilezikian JP, Loeb JN: The influence of hyperthyroidism and hypothyroidism on α-and β-adrenergic receptor systems and adrenergic responsiveness. Endocr Rev 4:378–388, 1983

    Article  PubMed  CAS  Google Scholar 

  3. Ishac EJ, Pennefather JN, Handberg GM: Effect of changes in thyroid state alpha-and beta-adrenoceptors, adenylate cyclase activity, and catecholamine levels in the atria. J Cardiovasc Pharmacol 5:396–405, 1983

    Article  PubMed  CAS  Google Scholar 

  4. Handberg GM: Influence of altered thyroid state on the inotropic potency of isoproterenol-studies with isolated rat left atria paced at different frequencies. J Cardiovasc Pharmacol 6:943–948, 1984

    Article  PubMed  CAS  Google Scholar 

  5. Fox AW, Juberg EN, May JM, Johnson RD, Abel PW, Minneman KP: Thyroid status and adrenergic receptor subtypes in the rat. J Pharmacol ExpTher 235:715–723, 1985

    CAS  Google Scholar 

  6. Hammond HK, White FC, Buxton IL, Saltzstein P, Brunton LL, Longhurst JC: Increased myocardial beta-receptors and adrenergic responses in hyperthyroid pigs. Am J Physiol 252:H283–H290, 1987

    PubMed  CAS  Google Scholar 

  7. Hawthorn MH, Gengo P, Wei X, Rutledge A, Moran JF, Gallant S, Triggle DJ: Effect of thyroid status on β-adrenoceptors and calcium channels in rat cardiac and vascular tissue. Naunyn-Schmiedeberg’s Arch Pharmacol 337:539–544, 1988

    Article  CAS  Google Scholar 

  8. Beekman RE, van Hardeveld C, Simonides S: On the mechanism of the reduction by thyroid hormone of β-adrenergic relaxation rate stimulation in rat heart. Biochem J 259:229–236, 1989

    PubMed  CAS  Google Scholar 

  9. Kiss E, Jakab G, Kranias EG, Edes I: Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res 75:245–251, 1994

    Article  PubMed  CAS  Google Scholar 

  10. Kaasik A, Paju K, Vetter R, Seppet EK: Thyroid hormones increase the contractility but suppress the effects of β-agonist by decreasing the phospholamban expression in rat atria. Cardiovasc Res, in press

    Google Scholar 

  11. Banerjee SP, Kung LS: β-Adrenergic receptors in the rat heart: Effects of thyroidectomy. Eur J Pharmacol 43:207–208, 1977

    Article  PubMed  CAS  Google Scholar 

  12. Ciaraldi T, Marinetti GV: Thyroxine and propylthiouracil effects of vivo on alpha and beta adrenergic receptors in rat heart. Biochem Biophys Res Commun 74:984–991, 1977

    Article  PubMed  CAS  Google Scholar 

  13. Banerjee SK: Comparative studies of atrial and ventricular myosin from normal, thyrotoxic, and thyroidectomized rabbits. Circ Res 52:131–136, 1983

    Article  PubMed  CAS  Google Scholar 

  14. Samuel J-L, Rappaport L, Syrovy I, Wisnewsky C, Marotte F, Whalen RG, Swartz K: Differential effect of thyroxine on atrial and ventricular myosin in rats. Am J Physiol 250:H333–H341, 1986

    PubMed  CAS  Google Scholar 

  15. Rupp H, Berger H-J, Pfeifer A, Werdan K: Effect of positive inotropic agents on myosin isoenzyme population and mechanical activity of cultured rat heart myocytes. Circ Res 68:1164–1173, 1991

    Article  PubMed  CAS  Google Scholar 

  16. Bottinelli R., Canepari M, Cappelli V, Reggiani C: Maximum speed of shortening and ATPase activity in atrial and ventricular myocardia of hyperthyroid rats. Am J Physiol 269:C785–C790, 1995

    PubMed  CAS  Google Scholar 

  17. Nakashima M, Maeda K, Sekiya A, Hagino Y: Effect of hypothyroid status on myocardial responses to sympathomimetic drugs. Jpn J Pharmacol 21:819–825, 1971

    Article  PubMed  CAS  Google Scholar 

  18. Brodde O-E, Schümann H-J, Wagner J: Decreased responsiveness of the adenylate cyclase system on left atria from hypothyroid rats. Mol Pharmacol 17:180–186, 1980

    PubMed  CAS  Google Scholar 

  19. Kunos G: Modulation of adrenergic reactivity and adrenoceptors by thyroid hormones. In: G Konus (ed). Adrenoceptors and Catecholamine Action. New York: John Wiley and Sons, Inc. 287–333, 1981

    Google Scholar 

  20. Kaasik A, Seppet EK, Ohisalo JJ: Enhanced negative inotropic effect of an adenosine A1-receptor agonist in rat left atria in hypothyroidism. J Mol Cell Cardiol 26:509–517, 1994

    Article  PubMed  CAS  Google Scholar 

  21. Bahouth SW: Thyroid hormones transcriptionally regulate the βl-adrenergic receptor gene in cultured ventricular myocytes. J Biol Chem 266:15863–15869, 1991

    PubMed  CAS  Google Scholar 

  22. Gilman AG: G proteins: Transducers of receptor-generated signals. Annu Rev Biochem 56:615–649, 1987

    Article  PubMed  CAS  Google Scholar 

  23. Levine MA, Feldman AM, Robishaw JD, Ladenson PW, Ahn TG, Moroney JF, Smallwood PM: Influence of thyroid hormone status on expression of genes encoding G-protein subunits in the rat heart. J Biol Chem 265:3553–3560, 1990

    PubMed  CAS  Google Scholar 

  24. Michel-Reher M, Gross G, Jasper JR, Bernstein D, Olbricht T, Brodde O-E, Michel MC: Tissue-and subunit regulation of G-protein expression by hypo-and hyperthyroidism. Biochem Pharmacol 45:1417–1423, 1993

    Article  PubMed  CAS  Google Scholar 

  25. Bahouth SW: Thyroid hormone regulation of transmembrane signalling in neonatal rat ventricular myocytes by selective alteration of the expression and coupling of G-protein alfa-subunits. Biochem J 307:831–841, 1995

    PubMed  CAS  Google Scholar 

  26. Sundaresan PR, Banerjee SP: Differential regulation of beta-adrenergic receptor-coupled adenylate cyclase by thyroid hormones in rat liver and heart: Possible role of corticosteroids. Hormone Res 27:109–118, 1987

    Article  PubMed  CAS  Google Scholar 

  27. Hohl CM, Wetzel S, Fertel RH, Wimsatt DK, Brierley GP, Altschuld RA: Hyperthyroid adult rat cardiomyocytes. I. Nucleotide content, and α-adrenoreceptors, and cAMP production. Am J Physiol 257:C948–C956, 1989

    PubMed  CAS  Google Scholar 

  28. Kragie L, Kwon YW, Smiehorowski R: Rat cardiac calcium channels and their relationships with beta-adrenergic and muscarinic receptors in hypothyroidism. Endocr Res 19:57–71, 1993

    Article  PubMed  CAS  Google Scholar 

  29. Malbon CC, Moreno FJ, Cabelli RJ, Fain J N: Fat cell adenylate cyclase and β-adrenergic receptors in altered thyroid states. J Biol Chem 253:671–678, 1978

    PubMed  CAS  Google Scholar 

  30. Kaasik A, Elomaa V, Seppet EK, Ohisalo JJ: Low particulate type IV phosphodiesterase activity in hypothyroid rat atria. J Mol Cell Cardiol 26:1587–1592, 1994

    Article  PubMed  CAS  Google Scholar 

  31. Kithas PA, Artman M, Thompson WJ, Strada SJ: Subcellular distribution of high-affinity type IV cyclicAMPphosphodiesterase activity in rabbit ventricular myocardium: Relations to the effects of cardiotonic drugs. Circ Res 62:782–789, 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Gristwood RW, English TAH, Wallwork J, Sampford KA, Owen DAA: Analysis of responses to a selective phosphodiesterase III inhibitor, SK&F 94120, on isolated myocardium, including human ventricular myocardium from ‘end-stage’ failure patients. J Cardiovasc Pharm 9:719–727, 1987

    Article  CAS  Google Scholar 

  33. Katano Y, Endoh M: Effects of a cardiotonic quinolinone derivate Y-20487 on the isoproterenol-induced positive inotropic action and cyclic AMP accumulation in rat ventricular myocardium: Comparison with rolipram, Ro 20-1724, milrinone, and isobutylmethylxanthine. J Cardiovasc Pharm 20:715–722, 1992

    CAS  Google Scholar 

  34. Lindemann JP, Watanabe AM: Phosphorylation of phospholamban in intact myocardium. Role of Ca2+-calmodulin-dependent mechanisms. J Biol Chem 260:4516–4525, 1985

    PubMed  CAS  Google Scholar 

  35. Vittone L, Mundina C, Chiappe de Cingolani G, Mattiazi A: Role of Ca2+-calmodulin dependent phospholamban phosphorylation on the relaxant effect of-adrenergic agonists. Mol Cell Biochem 124:33–42, 1993

    Article  PubMed  CAS  Google Scholar 

  36. Reuter H: Calcium channel modulation by neurotransmitters, enzymes, and drugs. Nature 301:569–574, 1983

    Article  PubMed  CAS  Google Scholar 

  37. Fabiato A: Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14, 1983

    PubMed  CAS  Google Scholar 

  38. Valdivia HH, Kaplan JH, Ellis-Davies GC, Lederer WJ: Rapid adaptation of cardiac ryanodine receptors: Modulation by Mg2+ and phosphorylation. Science 267:1997–2000, 1995

    Article  PubMed  CAS  Google Scholar 

  39. Morgan JP, Blinks JR: Intracellular Ca2+ transients in the cat papillary muscle. Can J Physiol Pharmacol 60:520–528, 1982

    Article  Google Scholar 

  40. Solaro RJ, Moir AJ, Perry SV: Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature 262:615–617, 1976

    Article  PubMed  CAS  Google Scholar 

  41. Colyer J: Control of the calcium pump of cardiac sarcoplasmic reticulum. A specific role for the pentameric structure of phos pholamban. Cardiovasc Res 27:1766–1771, 1993

    Article  PubMed  CAS  Google Scholar 

  42. Vetter R, Haase H, Will H: Potentiating effect of calmodulin and cyclic AMP-dependent protein kinase on ATP-dependent Ca2+-transport by cardiac sarcolemma. FEBS Lett 148:326–330, 1982

    Article  PubMed  CAS  Google Scholar 

  43. Dixon DA, Haynes DH: Kinetic characterization of the Ca2+-pumping ATPase of cardiac sarcolemma in four states of activation. J Biol Chem 264:13612–13622, 1989

    PubMed  CAS  Google Scholar 

  44. Nagai R., Zarain-Herzberg A, Brandi CJ, Fujii J, Tada MM, MacLennan DH, Alpert NR, Periasamy M: Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86:2966–2970, 1989

    Article  PubMed  CAS  Google Scholar 

  45. Arai M, Otsu K, MacLennan DH, Alpert NR, Periasamy M: Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins. Circ Res 69:266–276, 1991

    Article  PubMed  CAS  Google Scholar 

  46. Kimura Y, Otsu K, Nishida K, Kuzuya T, Tada M: Thyroid hormone enhances Ca2+ pumping activity of the cardiac sarcoplasmic reticulum by increasing Ca2+ATPase and decreasing phospholamban expression. J Mol Cell Cardiol 26:1145–1154, 1994

    Article  PubMed  CAS  Google Scholar 

  47. Wibo M, Kolar F, Zheng L, Godfraind T: Influence of thyroid status on postnatal maturation of calcium channels, beta-adrenoceptors and cation transport ATPases in rat ventricular tissue. J Mol Cell Cardiol 27:1731–1743, 1995

    Article  PubMed  CAS  Google Scholar 

  48. Seppet EK, Kadaja LY, Hata T, Kallikorm AP, Saks VA, Vetter R, Dhalla NS: Thyroid control over membrane processes in rat heart. Am J Physiol 26:66–71, 1991

    Google Scholar 

  49. Seppet EK, Kolar F, Dixon IMC, Hata T, Dhalla NS: Regulation of cardiac sarcolemmal Ca2+ channels and Ca2+ transporters by thyroid hormone. Mol Cell Biochem 129:145–159, 1993

    Article  PubMed  CAS  Google Scholar 

  50. Kaasik A, Minajeva A, Paju K, Eimre M, Seppet EK: Thyroid hormones differentially affect sarcoplasmic reticulum function in rat atria and ventricles. Mol Cell Biochem, in press

    Google Scholar 

  51. Morad M, Goldman Y: Excitation-contraction coupling in heart muscle: Membrane control of development of tension. Prog Biophys Mol Biol 27:257–313, 1975

    Article  Google Scholar 

  52. Urthaler F, Walker AA, Reeves DNS, Hetner LL: Maximal twitch tension in intact length-clamped ferret papillary muscles evoked by modified postextrasystolic potentiation. Circ Res 62:65–74, 1988

    Article  PubMed  CAS  Google Scholar 

  53. Magyar CE, Wang J, Azuma KK, McDonough: Reciprocal regulation of cardiac Na-K-ATPase and Na/Ca exchanger: Hypertension, thyroid hormone, development. Am J Physiol 269:C675–682, 1995

    PubMed  CAS  Google Scholar 

  54. Boerth SR, Artman M: Thyroid hormone regulates Na+/Ca2+ exchanger expression during postnatal maturation and in adult rabbit ventricular myocardium. Cardiovasc Res 31:E145–152, 1996

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seppet, E.K. et al. (1998). Mechanisms of thyroid hormone control over sensitivity and maximal contractile responsiveness to β-adrenergic agonists in atria. In: Saks, V.A., Ventura-Clapier, R., Leverve, X., Rossi, A., Rigoulet, M. (eds) Bioenergetics of the Cell: Quantitative Aspects. Developments in Molecular and Cellular Biochemistry, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5653-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5653-4_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7587-6

  • Online ISBN: 978-1-4615-5653-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics