Skip to main content

In situ measurements of creatine kinase flux by NMR. The lessons from bioengineered mice

  • Chapter
  • 278 Accesses

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 25))

Abstract

P-31 nuclear magnetic resonance (NMR) is uniquely suited to measure the kinetics of the phosphoryl-exchange reaction catalyzed by creatine kinase in intact mammalian tissue, especially striated muscle. Recently developed transgenic mouse models of the creatine kinase iso-enzyme system open novel opportunities to assess the functional importance of the individual iso-enzymes and their relative contribution to the total in situ flux through the CK reaction. This chapter reviews the most recent findings from NMR flux measurements on such genetic models of CK function. Findings in intact mouse skeletal and cardiac muscle in vivo are compared to data from purified mitochondrial and cytosolic creatine kinase in vitro. The relevance of findings in transgenic animals for the function of CK in wild-type tissue is described and the perspectives of transgenic techniques in future quantitative studies on the creatine kinase iso-enzyme system are indicated.(Mol Cell Biochem 184: 195–208, 1998)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40, 1992

    PubMed  CAS  Google Scholar 

  2. Wyss M, Smeitink J, Wevers RA, Wallimann T: Mitochondrial creatine kinase: A key enzyme in aerobic energy metabolism. Biochim Biophys Acta 1102:119–166, 1992

    Article  PubMed  CAS  Google Scholar 

  3. Wallimann T: Dissecting the role of creatine kinase. Curr Biol 1:4246, 1994

    Google Scholar 

  4. Rojo M, Hovius RC, Demel R, Nicolay K, Wallimann T: Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem 266:20290–20295, 1991

    PubMed  CAS  Google Scholar 

  5. Meyer RA, Sweeney HL, Kushmerick MJ: A simple analysis of the phosphocreatine shuttle. Am JPhysiol 246:C365–C377, 1984

    CAS  Google Scholar 

  6. Radda GK: Control, bioenergetics and adaptation in health and disease: Non-invasive biochemistry from nuclear magnetic resonance. FASEB J 6:3032–3038, 1992

    PubMed  CAS  Google Scholar 

  7. Schaefer S, Balaban RS: Cardiovascular magnetic resonance spectroscopy. Kluwer Academic Publishers, Boston, 1992

    Google Scholar 

  8. Van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, Ter Laak H, Wieringa B: Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74:621–631, 1993

    Article  PubMed  Google Scholar 

  9. Van Deursen J, Ruitenbeek W, Heerschap A, Jap P, Ter Laak H, Wieringa B: Creatine kinase in skeletal muscle metabolism: A study of mouse mutants with graded reduction in M-CK expression. Proc Natl Acad Sci USA 91:9091–9095, 1994

    Article  PubMed  Google Scholar 

  10. Van Deursen JMA: The role of the creatine kinase/phosphocreatine system studied by gene targeting. Thesis, Nijmegen University, Nijmegen, 1994

    Google Scholar 

  11. Steeghs KGJ, Benders A, Oerlemans F, De Haan A, Heerschap A, Ruitenbeek W, Jost C, Van Deursen J, Perryman B, Pette D, Brück-Wilder M, Koudijs J, Jap P, Veerkamp J, Wieringa B: Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89:1–11, 1997

    Article  Google Scholar 

  12. Van Dorsten FA, Furter R, Bijkerk M, Wallimann T, Nicolay K: The in vitro kinetics of mitochondrial and cytosolic creatine kinase determined by saturation transfer 31P NMR. Biochim Biophys Acta 1274:59–66, 1996

    Article  PubMed  Google Scholar 

  13. Morrison JF, Cleland WW: Isotope exchange studies of the mechanism of the reaction catalyzed by adenosine triphosphate: Creatine phosphotransferase. J Biol Chem 241:673–683, 1966

    PubMed  CAS  Google Scholar 

  14. Van Dorsten FA: 31P-NMR analysis of creatine kinase kinetics. From purified enzyme to intact skeletal and cardiac muscle. Thesis, Utrecht University, Utrecht, 1996

    Google Scholar 

  15. Hall N, DeLuca M: Developmental changes in creatine phosphokinase isoenzymes in neonatal mouse hearts. Biochem Biophys Research Commun 66:988–994, 1975

    Article  CAS  Google Scholar 

  16. Saks VA, Ventura-Clappier R, Aliev MK: Metabolic control and metabolic capacity: two aspects of creatine kinase functioning in the cell. Biochim Biophys Acta 1274:81–88, 1996

    Article  PubMed  Google Scholar 

  17. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova O Yu, Kuznetsov AV: Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration-a synthesis. In: VA Saks, R Ventura-Clappier (eds). Cellular Bio-Energetics: Role of Coupled Creatine Kinases. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp 155–192

    Chapter  Google Scholar 

  18. Brosnan MJ, Raman SP, Chen L, Koretsky, AP: Alteration of the creatine kinase isoenzyme distribution in transgenic mouse muscle by overexpression of the B subunit. Am J Physiol 264:C151–C160, 1993

    PubMed  CAS  Google Scholar 

  19. Roman BB, Foley JM, Meyer RA, Koretsky AP: Contractile and metabolic effects of increased creatine kinase activity in mouse skeletal muscle. Am J Physiol 39:C1236–C1245, 1996

    Google Scholar 

  20. Van Dorsten FA, Nederhoff MGH, Nicolay K, Van Echteid CJA: P31-NMR saturation transfer measurements of creatine kinase flux in wild-type and MM-CK deficient Langendorff-perfused mouse hearts. Proc. 4th Annual Scientific Meeting Inter national Society for Magnetic Resonance in Medicine, New York, April 27-May 3, 1996, p 432

    Google Scholar 

  21. Van Dorsten FA, Reese T, Nederhoff MGH, Van Echteld CJA, Nicolay K: in vivo fluxes through mitochondrial and cytoplasmic creatine kinase. P-31 NMR of skeletal and cardiac muscle from transgenic mice. Proc. 4th Annual Scientific Meeting International Society for Magnetic Resonance in Medicine, New York, April 27-May 3, 1996, p 24

    Google Scholar 

  22. Van Echteld CJA, Van Dorsten FA, Nederhoff MGJ, Nicolay K: 31P NMR study of creatine kinase (CK) flux in wild-type and transgenic M-CK deficient perfused mouse hearts. Int Soc for Heart Research, XVII European Congress, Bologna, J Mol Cell Cardiol 28: A22, 1996

    Google Scholar 

  23. Saks VA, Aliev MK: Is there the creatine kinase equilibrium in working heart cells? Biochem Biophys Res Commun 227:360–367, 1996

    Article  PubMed  CAS  Google Scholar 

  24. Bittl JA, DeLayre J, Ingwall JS: Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat. Biochemistry 26:6083–6090, 1987

    Article  PubMed  CAS  Google Scholar 

  25. McFarland EW, Kushmerick MJ, Moerland TS: Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. BiophysJ 67:1912–1924, 1994

    Article  CAS  Google Scholar 

  26. Von Kienlin M, Le Fur Y, Behr W, Roder F, Haase A, Horn M, Braeker B, Neubauer S: In the isolated perfused heart, regional metabolic heterogeneity can be detected during global low-flow ischemia. A31P-3D-CSI-NMR-study. Proc. 3rdAnnual Scientific Meeting Society for Magnetic Resonance, Nice, August 19-25, 1995, p 296

    Google Scholar 

  27. Zahler R, Ingwall JS: Estimation of heart mitochondrial creatine kinase flux using magnetization transfer NMR spectroscopy. Am J Physiol 262:H1022–H1028, 1992

    PubMed  CAS  Google Scholar 

  28. Zahler R, Ingwall JS: Analysis of compartmentation ofATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer. Biophys J 51:883–893, 1987

    Article  PubMed  CAS  Google Scholar 

  29. Matthews PM, Bland JL, Gadian DG, Radda GK: A31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochim Biophys Acta 721:312–320, 1982

    Article  PubMed  CAS  Google Scholar 

  30. Brindle KM, Blackledge MJ, Challiss RAJ, Radda GK: 31P NMR magnetization transfer measurements of ATP turnover during steadystate isometric muscle contraction in the rat hind limb in vivo. Biochemistry 28:4887–4893, 1989

    Article  PubMed  CAS  Google Scholar 

  31. Sauter A, Rudin M: Determination of creatine kinase kinetic parameters in rat brain by NMR magnetization transfer. Correlation with brain function. JBiol Chem 268:13166–13171, 1993

    CAS  Google Scholar 

  32. Van Dorsten FA, Wyss M, Wallimann T, Nicolay K: Activation of sea urchin sperm motility is accompanied by an increase in the creatine kinase exchange flux. Biochem J 325:411–416, 1997

    PubMed  Google Scholar 

  33. Tombes RM, Shapiro BM: Metabolite channelling: A phosphoryl-creatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell 41:325–334, 1985

    Article  PubMed  CAS  Google Scholar 

  34. Van Dorsten FA, Reese T, Gellerich JF, Van Echteld CJA, Nederhoff MGJ, Muller H-J, Van Vliet G, Nicolay K: Fluxes through cytosolic and mitochondrial creatine kinase, measured by P-31 NMR. Mol Cell Biochem 174:33–42, 1997

    Article  PubMed  Google Scholar 

  35. Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall JS: Velocity of the creatine kinase reaction decreases in post-ischemic myocardium: A 31P-NMR magnetization transfer study of the isolated ferret heart. Circ Res 63:1–15, 1988

    Article  PubMed  CAS  Google Scholar 

  36. Koretsky AP: Insights into cellular energy metabolism from transgenic mice. Physiol Rev 75:667–688, 1995

    PubMed  CAS  Google Scholar 

  37. De Haan A, Koudijs JCM, Wevers RA, Wieringa B: The effects of MM-creatine kinase deficiency on sustained force production of mouse fast skeletal muscle. Exp Physiol 80, 491–494, 1995

    PubMed  Google Scholar 

  38. Ventura-Clappier R, Kuznetsov AV, D’Albis A, Van Deursen J, Wieringa B, Veksler VI: Muscle creatine kinase-deficient mice. I. Alterations in myofibrillar function. J Biol Chem 270:19914–19920, 1995

    Article  Google Scholar 

  39. Veksler VI, Kuznetsov AV, Anflous K, Mateo P, Van Deursen J, Wieringa B, Ventura-Clappier R: Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mito chondrial function. JBiol Chem 270:19914–19920, 1995

    Article  Google Scholar 

  40. Dzeja PP, Zeleznikar RJ, Goldberg ND: Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 271:12847–12851, 1996

    Article  PubMed  CAS  Google Scholar 

  41. Laterveer FD, Gellerich FN, Nicolay K: Macromolecules increase the channelling of ADP from externally associated hexokinase to the matrix ofmitochondria. Eur J Biochem 232:569–577, 1995

    Article  PubMed  CAS  Google Scholar 

  42. Laterveer FD, Nicolay K, Gellerich FN: ADP delivery from adenylate kinase in the mitochondrial intermembrane space to oxidative phos-phorylation increases in the presence of macromolecules. FEBS Lett 386:255–259, 1996

    Article  PubMed  CAS  Google Scholar 

  43. Gellerich FN, Zierz S, Laterveer FD, Nicolay K: Effect of colloidosmotic pressure on ADP transport into mitochondria. Experimental determination of ADP concentration gradients across the mitochondrial outer membrane. In: HV Westerhoff, JL Snoep, FE Sluse, JE Wijker, BN Kholodenko (eds). BioThermoKinetics of the Living Cell. 1996, pp 295–299

    Google Scholar 

  44. Laterveer FD, Nicolay K, Gellerich FN: Experimental evidence for dynamic compartmentation of ADP at the mitochondrial periphery: Coupling of mitochondrial adenylate kinase and mitochondrial hexokinase. Mol Cell Biochem 174:43–51, 1997

    Article  PubMed  CAS  Google Scholar 

  45. Wyss M, Wallimann T: Creatine metabolism and the consequences of creatine depletion in muscle. In: VA Saks, R Ventura-Clappier (eds). Cellular Bio-Energetics: Role of Coupled Creatine Kinases. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp 51–68

    Chapter  Google Scholar 

  46. Van Deursen J, Jap P, Heerschap A, Ter Laak H, Ruitenbeek W, Wieringa B: Effects of the creatine analogue β-guanidinopropionic acid on skeletal muscles of mice deficient in muscle creatine kinase. Biochim Biophys Acta 1185:327–335, 1994

    Article  PubMed  Google Scholar 

  47. O’Gorman E, Beutner G, Wallimann T, Bridczka D: Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart and brain. Biochim Biophys Acta 1276:161–170, 1996

    Article  Google Scholar 

  48. Boehm EA, Radda GK, Tomlin H, Clark JF: The utilization of creatine and its analogues by cytosolic and mitochondrial creatine kinase. Biochim Biophys Acta 1274:119–128, 1996

    Article  PubMed  Google Scholar 

  49. Hamman BL, Bittl JA, Jacobus WE, Allen PD, Spencer RS, Tian R, Ingwall JS: Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am J Physiol 38:H1030–H1036, 1995

    Google Scholar 

  50. Tian R, Ingwall JS: Energetic basis for reduced contractile reserve in isolated rat hearts. Am J Physiol 39:H1207–H1216, 1996

    Google Scholar 

  51. Koretsky AP, Brosnan MJ, Chen L, Chen J, Van Dyke T: NMR detection of creatine kinase expressed in liver of transgenic mice: Determination of free ADP levels. Proc Natl Acad Sci USA 87:3112–3116, 1990

    Article  PubMed  CAS  Google Scholar 

  52. Westerhoff HV, Van Dam K. In: Thermodynamics and Control of Biological Free-Energy Transduction. Elsevier, Amsterdam, The Netherlands, 1987

    Google Scholar 

  53. Kholodenko BN, Cascante M, Westerhoff HV: Control theory of metabolic channelling. In: VA Saks, R Ventura-Clappier (eds). Cellular Bio-Energetics: Role of Coupled Creatine Kinases. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp 313–331

    Chapter  Google Scholar 

  54. Jensen PR, Michelsen O, Westerhoff HV: Experimental deter mination of control by H+-ATPase in Escherichia coli. J Bioenerg Biomembr 27:543–554, 1995

    Article  PubMed  CAS  Google Scholar 

  55. Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W: Structure of the mitochondrial creatine kinase. Nature 381:341–345, 1996

    Article  PubMed  CAS  Google Scholar 

  56. Forsén F, Hoffman RA: Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901, 1963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nicolay, K., van Dorsten, F.A., Reese, T., Kruiskamp, M.J., Gellerich, J.F., van Echteld, C.J.A. (1998). In situ measurements of creatine kinase flux by NMR. The lessons from bioengineered mice. In: Saks, V.A., Ventura-Clapier, R., Leverve, X., Rossi, A., Rigoulet, M. (eds) Bioenergetics of the Cell: Quantitative Aspects. Developments in Molecular and Cellular Biochemistry, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5653-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5653-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7587-6

  • Online ISBN: 978-1-4615-5653-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics