Skip to main content

Adenylate kinase: Kinetic behavior in intact cells indicates it is integral to multiple cellular processes

  • Chapter

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 25))

Abstract

Monitoring the kinetic behavior of adenylate kinase (AK) and creatine kinase (CK) in intact cells by 18O-phosphoryl oxygen exchange analysis has provided new perspectives from which to more fully define the involvement of these phosphotransferases in cellular bioenergetics. A primary function attributable to both AK and CK is their apparent capability to couple ATP utilization with its generation by glycolytic and/or oxidative processes depending on cell metabolic status. This is evidenced by the observation that the sum of the net AK- plus CK-catalyzed phosphoryl transfer is equivalent to about 95% of the total ATP metabolic flux in non-contracting rat diaphragm; under basal conditions almost every newly generated ATP molecule appears to be processed by one or the other of these phosphotransferases prior to its utilization. Although CK accounts for the transfer of a majority of the ATP molecules generated/consumed in the basal state there is a progressive, apparently compensatory, shift in phosphotransfer catalysis from the CK to the AK system with increasing muscle contraction or graded chemical inhibition of CK activity. AK and CK appear therefore to provide similar and interrelated functions. Evidence that high energy phosphoryl transfer in some cell types or metabolic states can also be provided by specific nucleoside mono- and diphosphate kinases and by the phosphotransfer capability inherent to the glycolytic system has been obtained. Measurements by 18O-exchange analyses of net AK- and CK-catalyzed phosphoryl transfer in conjunction with 31P NMR analyses of total unidirectional phosphoryl flux show that each new energy-bearing molecule CK or AK generates subsequently undergoes about 50 or more unidirectional CK-or AK-catalyzed phosphotransfers en route to an ATP consumption site in intact muscle. This evidence of multiple enzyme catalyzed exchanges coincides with the mechanism of vectorial ligand conduction suggested for accomplishing intracellular high energy phosphoryl transfer by the AK and CK systems. AK-catalyzed phosphotransfer also appears to be integral to the transduction of metabolic signals influencing the operation of ion channels regulated by adenine nucleotides such as ATP-inhibitable K+ channels in insulin secreting cells; transition from the ATP to ADP liganded states closely coincides with the rate AK-catalyzes phosphotransfer transforming ATP (+AMP) to (2) ADP.(Mol Cell Biochem 184:: 169–182, 1998)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hochachka PW: Muscles as Molecular and Metabolic Machines. CRC Press, London, 1994

    Google Scholar 

  2. From AHL, Zimmer SD, Michurski SP, Mohanakrishnan P, Ulstad VK, Thoma WJ, Ugurbil K: Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry 29:3731–3743, 1990

    Article  PubMed  CAS  Google Scholar 

  3. Brown GC: Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13, 1992

    PubMed  CAS  Google Scholar 

  4. Katz LA, Swain JA, Portman MA, Balaban RS: Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol 256:H262–H274, 1989

    Google Scholar 

  5. Zeleznikar RJ, Dzeja PP, Goldberg ND: Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. J Biol Chem 270:7311–7319, 1995

    Article  PubMed  CAS  Google Scholar 

  6. Nichols CG, Lederer WJ: The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes. J Physiol 423:91–110, 1990

    PubMed  CAS  Google Scholar 

  7. Olson LK, Schroeder W, Robertson RP, Goldberg ND, Walseth TF: Suppression of adenylate kinase catalyzed phosphotransfer precedes and is associated with glucose-induced insulin secretion in intact HIT-Tl 5 cells. J Biol Chem 271:16544–16552, 1996

    Article  PubMed  CAS  Google Scholar 

  8. Meyer RA, Sweeney HL, Kushmerick MJ: A simple analysis of the ‘phosphocreatine shuttle’. Am J Physiol 246:C365–C377, 1984

    PubMed  CAS  Google Scholar 

  9. Kushmeric MJ: Skeletal muscle — a paradigm for testing principles of bioenergetics. J Bioenerg Biomem 27:555–569, 1995

    Article  Google Scholar 

  10. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40, 1992

    PubMed  CAS  Google Scholar 

  11. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova YO, Kuznetsov AV: Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration-a synthesis. Mol Cell Biochem 133/134:155–192, 1994

    Article  Google Scholar 

  12. Dzeja PP, Zeleznikar RJ, Goldberg ND: Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 271:12847–12851, 1996

    Article  PubMed  CAS  Google Scholar 

  13. Welch GR, DeMoss JA: Enzyme organization in vivo : Thermodynamic-kinetic perspectives. In: PA Sere, RW Estabrook (eds). Microenvironments and Metabolic Compartmentation. Academic Press, New York, 1978, pp 323–344

    Google Scholar 

  14. Harold FM: Biochemical topology: from vectorial metabolism to morphogenesis. Biosc Rep 11:347–385, 1991

    Article  CAS  Google Scholar 

  15. Mathews CK: The cell-bag of enzymes or network of channels? J Bacteriol 175:6377–6381, 1993

    PubMed  CAS  Google Scholar 

  16. Dawis SM, Graeff RM, Heyman RA, Walseth TF, Goldberg ND: Regulation of cyclic GMP metabolism in toad photoreceptors. Definition of the metabolic events subserving photoexcited and attenuated states. J Biol Chem 263:8771–8785, 1988

    PubMed  CAS  Google Scholar 

  17. Zeleznikar RJ, Heyman RA, Graeff RM, Walseth TF, Dawis SM, Butz EA, Goldberg ND: Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. J Biol Chem 265:300–311, 1990

    PubMed  CAS  Google Scholar 

  18. Bessman SP, Carpenter CL: The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54:831–862, 1985

    Article  PubMed  CAS  Google Scholar 

  19. Dzeja P, Kalvenas A, Toleikis A, Praskevicius A: The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase. Biochem Int 10:259–265, 1985

    PubMed  CAS  Google Scholar 

  20. Schoff PK, Cheetham J, Lardy HA: Adenylate kinase activity in ejaculated bovine sperm flagella. J Biol Chem 264:6086–6091, 1989

    PubMed  CAS  Google Scholar 

  21. Gellerich FN: The role ofadenylate kinase in dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space. FEBS Lett 297:55–58, 1992

    Article  PubMed  CAS  Google Scholar 

  22. Zeleznikar RJ, Goldberg ND: Kinetics and compartmentation of energy metabolism in intact skeletal muscle determined from 18O labeling of metabolite phosphoryls. J Biol Chem 266:15110–15119, 1991

    PubMed  CAS  Google Scholar 

  23. Mitchell P: Foundations of vectorial metabolism and osmochemistry. Biosci Rep 11:297–346, 1991

    Article  PubMed  CAS  Google Scholar 

  24. Colowick SP, Kalckar HM: The role of myokinase in transphos-phorylations. 1. The enzymatic phosphorylation of hexoses by adenyl pyrophosphate. J Biol Chem 148:117–126, 1943

    CAS  Google Scholar 

  25. Noda LH: Adenylate kinase. In: PD Boyer (ed). The Enzymes, 3rd ed, vol 8. Academic Press, New York, 1973, pp 279–305

    Google Scholar 

  26. Atkinson DE: The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034, 1968

    Article  PubMed  CAS  Google Scholar 

  27. Kammermeier H: Meaning of energetic parameters. Basic Res Cardiol 88:380–384, 1993

    Article  PubMed  CAS  Google Scholar 

  28. Davies RE: On the mechanism of muscular contraction. Essays Biochem 1:29–55, 1965

    PubMed  CAS  Google Scholar 

  29. Criss WE: Relationship of ATP: AMP phosphotransferase isozymes to tissue respiration. Arch Biochem Biophys 144:138–142, 1971

    Article  PubMed  CAS  Google Scholar 

  30. Tanabe T, Yamada M, Noma T, Kajii T, Nakazawa A: Tissue-specific and developmentally regulated expression of the genes encoding adenylate kinase isoenzymes. J Biochem 113:200–207, 1993

    PubMed  CAS  Google Scholar 

  31. Savabi F: Interaction of creatine kinase and adenylate kinase systems in muscle cells. Mol Cell Biochem 133/134:145–152, 1994

    Article  Google Scholar 

  32. Verkhovsky MI, Morgan JE, Puustein A, Wikstrom M: Kinetic trapping of oxygen in cell respiration. Nature 380:268–270, 1996

    Article  PubMed  CAS  Google Scholar 

  33. Mainwood GW, Rakusan K: A model for intracellular energy transport. Can JPhysiol Pharmacol 60:98–102, 1982

    Article  CAS  Google Scholar 

  34. Jacobus WE: Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility ofADP. Biochem Biophys Res Commun 133:1035–1041, 1985

    Article  PubMed  CAS  Google Scholar 

  35. van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, ter Laak H, Wieringa B: Skeletal muscle of mice deficient in muscle creatine kinase lack burst activity. Cell 74:621–631, 1993

    Article  PubMed  Google Scholar 

  36. Drew JS, Harwalkar VA, Stein LA: Product inhibition of the actomyosin subfragment-1 ATPase in skeletal, cardiac, and smooth muscle. Circ Res 71:1067–1077, 1992

    Article  PubMed  CAS  Google Scholar 

  37. Bandlow W, Strobel G, Zoglowek C, Oechner U, Magdolen V: Yeast adenylate kinase is active simultaneously in mitochondria and cytoplasm and is required for non-fermentative growth. Eur J Biochem 178:451–457, 1988

    Article  PubMed  CAS  Google Scholar 

  38. Craig DB, Wallace CJ: ATP binding to cytochrome c diminishes electron flow in the mitochondrial respiratory pathway. Prot Sci 2:966–976, 1993

    Article  CAS  Google Scholar 

  39. Yoshizaki K, Watari H, Radda GH: Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Biochim Biophys Acta 1051:144–150, 1990

    Article  PubMed  CAS  Google Scholar 

  40. Hubley MJ, Rosanske RC, Moerland TS: Diffusion coefficients of ATP and creatine phosphate in isolated muscle: Pulsed gradient 31P NMR of small biological samples. NMR in Biomed 8:72–78, 1995

    Article  CAS  Google Scholar 

  41. Xu Z, Stebbins JF: Cation dynamics and diffusion in lithium orthosilicate: two-dimensional lithium-6 NMR. Science 270:1332–1334, 1995

    Article  CAS  Google Scholar 

  42. Nagle JF, Morowitz HJ: Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci USA 75:289–302, 1978

    Article  Google Scholar 

  43. Sere P: Complexes of sequential metabolic enzymes. Ann Rev Biochem 56:89–124, 1987

    Article  Google Scholar 

  44. Wegmann G, Zanolla E, Eppenberger HM, Wallimann T: In situ compartmentation of creatine kinase in intact sarcomeric muscle: The actomyosin overlap zone as a molecular sieve. J Muscle Res Cell Motil 13:420–435, 1992

    Article  PubMed  CAS  Google Scholar 

  45. Zahler R, Bittl JA, Ingwall J: Analysis of compartmentation of ATP in skeletal and cardiac muscle using P nuclear magnetic resonance saturation transfer. Biophys J 51:883–893, 1987

    Article  PubMed  CAS  Google Scholar 

  46. Ingwal JS: Whole-organ enzymology of creatine kinase system in heart. Biochem Soc Trans 19:1006–1010, 1991

    Google Scholar 

  47. Gupta RK: Saturation transfer31P NMR studies of the intact human red blood cell. Biochim Biophys Acta 586:189–195, 1979

    Article  CAS  Google Scholar 

  48. Neeman M, Rushkin E, Kaye AM, Degani H: 31P-NMR studies of phosphate transfer rates in T47D human breast cancer cells. Biochim Biophys Acta 930:179–192, 1987

    Article  PubMed  CAS  Google Scholar 

  49. Wallimann T: P-31-NMR-measured creatine reaction flux in muscle-a caveat. J Muscle Res Cell Mot 17:177–181, 1996

    Article  CAS  Google Scholar 

  50. Goldbeter A, Nicolis G: An allosteric enzyme model with positive feedback applied to glycolytic oscillations. Progr Theor Biol 4:65–160, 1976

    CAS  Google Scholar 

  51. Gray P, Scott SK: Chemical Oscillations and Instabilities. Non-linear Chemical Kinetics. Clarendon Press, Oxford, 1990, pp 292–300

    Google Scholar 

  52. Ashcroft SJH, Ashcroft FM: Properties and functions ofATP-sensitive K-channels. Cell Signal 2:197–214, 1990

    Article  PubMed  CAS  Google Scholar 

  53. Higgins CF: The ABC of channel regulation. Cell 82:693–696, 1995

    Article  PubMed  CAS  Google Scholar 

  54. Dukes ID, Philipson LH: K+ channels: Generating excitement in pancreatic beta-cells. Diabetes 45:845–853, 1996

    Article  PubMed  CAS  Google Scholar 

  55. Carson MR, Welsh MJ: Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins. Biophys J 69:2443–2448, 1995

    Article  PubMed  CAS  Google Scholar 

  56. Levin SR, Kasson BG, Driessen JF: Adenosine triphosphatases of rat pancreatic islets: comparison with those of rat kidney. J Clin Invest 62:692–701, 1978

    Article  PubMed  CAS  Google Scholar 

  57. Olson LK: Dynamics of High Energy Nucleotide Phosphoryl Metabolism in Intact HIT-T15 Cells During Glucose-Induced Insulin Secretion. Ph. D. Thesis, University of Minnesota, 1991, pp 97–98

    Google Scholar 

  58. Ottaway JH, Mowbray J: The role of compartmentation in the control ofglycolysis. Curr Top Cell Regul 12:107–208, 1977

    PubMed  CAS  Google Scholar 

  59. Watanabe K, Fukumoto H, Isoi K: Intracellular localization of ATP: AMP phosphotransferase in Escherchia coli. Biochem Biophys Res Commun 134:527–531, 1986

    Article  PubMed  CAS  Google Scholar 

  60. Nagy AK, Shuster TA, Delgado-Escueta AV: Rat brain synaptosomal ATP: AMP-phosphotransferase activity. J Neurochem 53:1166–1172, 1989

    Article  PubMed  CAS  Google Scholar 

  61. Larsson O, Ammala C, Bokvist K, Fredholm B, Rorsman P: Stimulation of the KATP channel by ADP and diazoxide requires nucleotide hydrolysis in mouse pancreatic-cells. J Physiol 463:349–365, 1993

    PubMed  CAS  Google Scholar 

  62. Lee K, Rowe ICM, Ashford MW: Characterization of anATP-modulated large conductance Ca2+-activated channel present in rat cortical neurones. JPhysiol 488:319–337, 1995

    CAS  Google Scholar 

  63. Quinton PM, Reddy MM: Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Nature 360:79–81, 1992

    Article  PubMed  CAS  Google Scholar 

  64. Gutierrez JA, Csonka LN: Isolation and characterization of adenylate kinase (ADK) mutations in Salmonella typhimurium which block the ability of glycine betaine to function as an osmoprotectant. J Bacteriol 177:390–400, 1995

    PubMed  CAS  Google Scholar 

  65. Dzeja P, Noronha L, Zeleznikar R, Wieringa B, Goldberg N: Creatine phosphate turnover in skeletal muscles of M-CK, ScCKmit and MCK/ ScCKmit deficient mice. FASEB J 10: LB114, 1996

    Google Scholar 

  66. Lynch RM, Fogarty KE, Fay FS: Modulation of hexokinase association with mitochondria analyzed with quantitative three-dimensional cofocal microscopy. J Cell Biol 112:385–395, 1991

    Article  PubMed  CAS  Google Scholar 

  67. Kingsley-Hickman PB, Sako KY, Mohanakrishnan P, Robitaille PML, From AHL, Foker JE, Ugurbil K: 31P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium. Biochemistry 26:7501–7510, 1987

    Article  PubMed  CAS  Google Scholar 

  68. Portman MA: Measurement of unidirectional P. → ATP flux in lamb myocardium in vivo. Biochim Biophys Acta 1185:221–227, 1994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dzeja, P.P., Zeleznikar, R.J., Goldberg, N.D. (1998). Adenylate kinase: Kinetic behavior in intact cells indicates it is integral to multiple cellular processes. In: Saks, V.A., Ventura-Clapier, R., Leverve, X., Rossi, A., Rigoulet, M. (eds) Bioenergetics of the Cell: Quantitative Aspects. Developments in Molecular and Cellular Biochemistry, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5653-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5653-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7587-6

  • Online ISBN: 978-1-4615-5653-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics