Skip to main content

Insulin receptor-associated protein tyrosine phosphatase(s): Role in insulin action

  • Chapter
Book cover Insulin Action

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 24))

Abstract

Protein tyrosine phosphatases (PTPs) play a critical role in regulating insulin action in part through dephosphorylation of the active (autophosphorylated) form of the insulin receptor (IRK) and attenuation of its tyrosine kinase activity. Following insulin binding the activated IRK is rapidly internalized into the endosomal apparatus, a major site at which the IRK is dephosphorylated in vivo. Studies in rat liver suggest a complex regulatory process whereby PTPs may act, via selective IRK tyrosine dephosphorylation, to modulate IRK activity in both a positive and negative manner. Use of peroxovanadium (pV) compounds, shown to be powerful PTP inhibitors, has been critical in delineating a close relationship between the IRK and its associated PTP(s) in vivo. Indeed the in vivo administration of pV compounds effected activation of IRK in parallel with an inhibition of IRK-associated PTP activity. This process was accompanied by a lowering of blood glucose levels in both normal and diabetic rats thus implicating the IRK-associated PTP(s) as a suitable target for defining a novel class of insulin mimetic agents. Identification of the physiologically relevant IRK-associated PTP(s) should facilitate the development of drugs suitable for managing diabetes mellitus. Mol Cell Biochem 182: 79-89, 1998)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kahn CR: Insulin action, diabetogenes, and the cause of type 2 diabetes. Diabetes 43: 1066–1084, 1994

    Article  PubMed  CAS  Google Scholar 

  2. Waters SB, Pessin JE: Insulin receptor substrate 1 and 2 (IRS1 and IRS2): What a tangled web we weave. Trends Cell Biol 6: 1–4, 1996

    Article  PubMed  CAS  Google Scholar 

  3. Lee J, Pilch PF: The insulin receptor: Structure, function and signalling. Am J Physiol 266: C319–C334, 1994

    PubMed  CAS  Google Scholar 

  4. White MF, Livingston JN, Backer JM, Lauris V, Dull TJ, Ullrich A: Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not effect its tyrosine kinase activity. Cell 54: 641–649, 1988

    Article  PubMed  CAS  Google Scholar 

  5. Backer JM, Schroeder GG, Kahn CR, Myers J, Wilden PA, Cahill DA, White MF: Insulin stimulation of phosphatidylinositol 3-kinase maps to insulin receptor regions required for endogenous substrate phosphorylation. J Biol Chem 267: 1367–1374, 1992

    PubMed  CAS  Google Scholar 

  6. Danielsen G, Roth RA: Role of the juxtamembrane tyrosine in insulin receptor-mediated tyrosine phosphorylation of p60 endogenous substrates. Endocrinology 137: 5326–5331, 1996

    Article  PubMed  CAS  Google Scholar 

  7. White MF, Shoelson SE, Keutmann H, Kahn CR: A cascade of tyrosine autophosphorylation in the β-subunit activates the phosphotransferase of the insulin receptor. J Biol Chem 263: 2969–2980, 1988

    PubMed  CAS  Google Scholar 

  8. Herrera R, Rosen O: Autophosphorylation of the insulin receptor in vitro: Designation of phosphorylation sites and correlation with receptor kinase activation. J Biol Chem 261: 11980–11985, 1986

    PubMed  CAS  Google Scholar 

  9. Kwok YC, Nemenoff RA, Powers AC, Avruch J: Kinetic properties of the insulin receptor tyrosine protein kinase: Activation through an insulin-stimulated tyrosine specific, intramolecular autophosphorylation. Arch Biochem Biophys 244: 102–113, 1986

    Article  PubMed  CAS  Google Scholar 

  10. Wei L, Hubbard SR, Hendrickson WA, Ellis L: Expression, characterization, and crystallization of the catalytic core of the human insulin receptor protein-tyrosine kinase domain. J Biol Chem 270: 8122–8130, 1995

    Article  PubMed  CAS  Google Scholar 

  11. Hubbard SR, Wei L, Ellis L, Hendrickson WA: Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372: 746–754, 1994

    Article  PubMed  CAS  Google Scholar 

  12. Levy-Toledano R, Taouis M, Blaettler DH, Gorden P, Taylor SI: Insulininduced activation of phosphatidyl inositol 3-kinase. Demonstration that the p85 subunit binds directly to the COOH terminus of the insulin receptor in intact cells. J Biol Chem 269: 31178–31182, 1994

    PubMed  CAS  Google Scholar 

  13. Hansen H, Svensson U, Zhu J, Laviola L, Giorgino F, Wolf G, Smith RJ, Riedel H: Interaction between the Grbl0 SH2 domain and the insulin receptor carboxyl terminus. J Biol Chem 271: 8882–8886, 1996

    Article  PubMed  CAS  Google Scholar 

  14. Ugi S, Maegawa A, Olefsky JM, Shigeta Y, Kashiwagi A: Src homology 2 domains of protein tyrosine Phosphatase are associated in vitro with both the insulin receptor and insulin receptor substrate-1 via different phosphotyrosine motifs. FEBS Lett 340: 216–220, 1994

    Article  PubMed  CAS  Google Scholar 

  15. Staubs PA, Reichart DR, Saltiel AR, Milarsky KM, Maegawa H, Berhanu P, Olefsky JM, Seely BL: Localization of the insulin receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein. J Biol Chem 269: 27186–27192, 1994

    PubMed  CAS  Google Scholar 

  16. Kharintonenov A, Schnekenburger J, Chen Z, Knyazev P, Ali S, Zwick E, White M, Ullrich A: Adapter function of protein Phosphatase 1D in insulin receptor/insulin receptor substrate-1 interaction. J Biol Chem 270: 29189–29193, 1995

    Article  Google Scholar 

  17. Theis RS, Ullrich A, McClain DA: Augmented mitogenesis and impaired metabolic signalling mediated by a truncated insulin receptor. J Biol Chem 264: 12820–12825, 1989

    Google Scholar 

  18. Takata Y, Webster NJG, Olefsky JM: Mutation of the two carboxylterminal tyrosines results in an insulin receptor with normal metabolic signalling but enhanced mitogenic signalling properties. J Biol Chem 266: 9135–9139, 1991

    PubMed  CAS  Google Scholar 

  19. Baron V, Gautier N, Kalliman P, Dolais-Kitabgi J, Van Obberghen E: The carboxy-terminal domain of the insulin receptor: Its potential role in growth promoting effects. Biochemistry 30: 9365–9370, 1991

    Article  PubMed  CAS  Google Scholar 

  20. Takata Y, Webster NJG, Olefsky JM: lntracellular signalling by a mutant human insulin receptor lacking the carboxy-terminal tyrosine. J Biol Chem 267: 9065–9070, 1992

    PubMed  CAS  Google Scholar 

  21. Ando A, Momomura K, Tobe K, Yamamoto-Honda R, Sakura H, Tamori Y, Kaburagi Y, Koshio O, Akunuma Y, Yazaki Y, Kasuga M, Kadowaki T: Enhanced insulin-induced mitogenesis and mitogen-activated protein kinase activities in mutant insulin receptors with substitution of two COOH-terminal tyrosine autophosphorylation sites by Phenylalanine. J Biol Chem 267: 12788–12796, 1992

    PubMed  CAS  Google Scholar 

  22. Maegawa H, McClain DA, Freidenberg G, Olefsky JM, Napier M, Lipari T, Dull TJ, Lee J, Ullich A: Properties of a human insulin receptor with a COOH-terminal truncation. 2. Truncated receptors have normal kinase activity but are defective in signalling metabolic effects. J Biol Chem 263: 8912–8917, 1988

    PubMed  CAS  Google Scholar 

  23. Cheatham B, Kahn CR: Insulin action and the insulin signalling network. Endocrine Rev 16: 117–142, 1995

    CAS  Google Scholar 

  24. Sale G: Serine/threonine kinases and tyrosine phosphatases that act on the insulin receptor. Biochem Soc Trans 20: 664–670, 1992

    PubMed  CAS  Google Scholar 

  25. Carter WG, Sullivan AC, Asamoah KA, Sale GJ: Purification and characterization of an insulin-stimulated insulin receptor serine kinase. Biochemistry 35: 14340–14351, 1996

    Article  PubMed  CAS  Google Scholar 

  26. Baltensperger K, Lewis RE, Woon CW, Vissavajjhala AH, Ross AH, Czech MP: Catalysis of serine and tyrosine autophosphorylation by the human insulin receptor. Proc Natl Acad Sci USA 89: 7885–7889, 1992

    Article  PubMed  CAS  Google Scholar 

  27. Tauer TJ, Volle DJ, Rhode SL, Lewis RE: Expression of the insulin receptor with a recombinant vaccinia virus. Biochemical evidence that the insulin receptor has intrinsic serine kinase activity. J Biol Chem 271: 331–336, 1996

    Article  PubMed  CAS  Google Scholar 

  28. Burgess JW, Bevan AP, Bergeron JJM, Posner BI: lntracellular trafficking and processing of ligand receptor complexes in the endosomal system. Exp Clin Endocrinol 11: 67–78, 1992

    Google Scholar 

  29. Baass PC, Di Guglielmo GM, Authier F, Posner BI, Bergeron JJM: Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol 5: 465–470, 1995

    Article  PubMed  CAS  Google Scholar 

  30. Bevan AP, Drake PG, Bergeron JJM, Posner BI: lntracellular signal transduction: The role of endosomes. TEM 7: 13–21, 1996

    PubMed  CAS  Google Scholar 

  31. Authier F, Posner BI, Bergeron JJM: Hepatic endosomes are the major physiological locus of insulin and glucagon degradation in vivo. Cell Prot Sys: 89–113,1994

    Google Scholar 

  32. Authier F, Posner BI, Bergeron JJM: Insulin-degrading enzyme. Clin Invest Med 19: 149–160, 1996

    PubMed  CAS  Google Scholar 

  33. Khan MN, Savoie S, Bergeron JJM, Posner BI: Characterization of rat liver endosomal structures. In vivo activation of insulin-stimulable receptor kinase in these structures. J Biol Chem 261: 8462–8472, 1986

    PubMed  CAS  Google Scholar 

  34. Khan MN, Baquiran G, Brule C, Burgess J, Foster B, Bergeron JJM, Posner BI: Internalization and activation of the rat liver insulin receptor kinase in vivo. J Biol Chem 264: 12931–12940, 1989

    PubMed  CAS  Google Scholar 

  35. Backer JM, Kahn CR, White MF: Tyrosine phosphorylation of the insulin receptor during insulin-stimulated internalization in rat hepatoma cells. J Biol Chem 294: 1694–1701, 1989

    Google Scholar 

  36. Klein HH, Freidenberg GR, Matthaei S, Olefsky JM: Insulin receptor kinase following internalization in isolated rat adipocytes. J Biol Chem 262: 10557–10564, 1987

    PubMed  CAS  Google Scholar 

  37. Kublaoui B, Lee J, Pilch PF: Dynamics of signalling during insulinstimulated endocytosis of its receptor in adipocytes. J Biol Chem 270: 59–65, 1995

    Article  PubMed  CAS  Google Scholar 

  38. Wang B, Balba Y, Knutson VP: Insulin-induced in situ phosphorylation of the insulin receptor located in the plasma membrane versus endosomes. BBRC 227: 27–34, 1996

    PubMed  CAS  Google Scholar 

  39. Burgess JW, Wada I, Ling N, Khan MN, Bergeron JJM, Posner BI: Decrease in β-subunit phosphotyrosine correlates with internalization and activation of the endosomal insulin receptor kinase. J Biol Chem 267: 10077–10086, 1992

    PubMed  CAS  Google Scholar 

  40. Bevan AP, Burgess JW, Drake PG, Shaver A, Bergeron JJM, Posner BI: Selective activation of the rat hepatic endosomal insulin receptor kinase. Role for the endosome in insulin signalling. J Biol Chem 270: 10784–10791, 1995

    Article  PubMed  CAS  Google Scholar 

  41. Kelly KL, Ruderman NB: Insulin-stimulated phosphatidylinositol 3-kinase: Association with a 185 kDa tyrosine phosphorylated protein (IRS-1) and localization in a low density membrane vesicle. J Biol Chem 268: 4391–4398, 1993

    PubMed  CAS  Google Scholar 

  42. Rosen OM, Herrera R, Olowe Y, Petruzzelli LM, Cobb MH: Phosphorylation activates the IR tyrosine protein kinase. Proc Natl Acad Sci USA 80: 3237–3240, 1983

    Article  PubMed  CAS  Google Scholar 

  43. Mooney RA, Anderson DL: Phosphorylation of the insulin receptor in permeablized adipocytes is coupled to a rapid dephosphorylation reaction. J Biol Chem 264: 6850–6857, 1989

    PubMed  CAS  Google Scholar 

  44. Mooney RA, Bordwell KL: Differential dephosphorylation of the insulin receptor and its 160 kDa substrate (ppl60) in rat adipocytes. J Biol Chem 267: 14054–14060, 1992

    PubMed  CAS  Google Scholar 

  45. Bernier M, Liotta AS, Kole HK, Shock DD, Roth J: Dynamic regulation of intact and C-terminal truncated insulin receptor phosphorylation in permeablized cells. Biochemistry 33: 4343–4351, 1994

    Article  PubMed  CAS  Google Scholar 

  46. Goldstein BJ: Protein-tyrosine phosphatases and the regulation of insulin action. J Cell Biochem 48: 33–42, 1992

    Article  PubMed  CAS  Google Scholar 

  47. Faure R, Posner BI: Differential intracellular compartmentalization of phosphotyrosine phosphatases in a glial cell line: TC-PTP Versus PTP-1B. GLIA 9: 311–314, 1993

    Article  PubMed  CAS  Google Scholar 

  48. Mauro LJ, Dixon JE: ‘Zip codes’ direct intracellular protein tyrosine phosphatases to the correct cellular ‘address’. TIBS 19: 151–155, 1994

    PubMed  CAS  Google Scholar 

  49. Lammers R, Bossenmaier B, Cool DE, Tonks NK, Schlessinger J, Fischer EH, Ullrich A: Differential activities of protein tyrosine phosphatases in intact cells. J Biol Chem 268: 22456–22462, 1993

    PubMed  CAS  Google Scholar 

  50. King MJ, Sale GJ: Insulin-receptor phosphotyrosyl-protein phosphatases. Biochem J 256: 893–902, 1988

    PubMed  CAS  Google Scholar 

  51. Ahmad F, Goldstein BJ: Purification, identification and subcellular distribution of three predominant protein-tyrosine Phosphatase enzymes in skeletal muscle tissue. Biochim Biophys Acta 1248: 57–69, 1995

    Article  PubMed  Google Scholar 

  52. Meyerovitch J, Backer JM, Csermely P, Shoelson SE, Kahn CR: Insulin differentially regulates protein phosphotyrosine Phosphatase activity in rat hepatoma cells. Biochemistry 31: 10338–10344, 1992

    Article  PubMed  CAS  Google Scholar 

  53. Faure R, Baquiran G, Bergeron JJM, Posner BI: The dephosphorylation of insulin and epidermal growth factor receptors. The role of endosomeassociated phosphotyrosine phosphatase(s). J Biol Chem 267: 11215–11221, 1992

    PubMed  CAS  Google Scholar 

  54. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-Sun G, Fantus IG, Ng JN, Hall DA, Soo Lum B, Shaver A: Peroxovanadium compounds. A new class of potent phosphotyrosine Phosphatase inhibitors which are insulin mimetics. J Biol Chem 269: 4596–4604, 1994

    PubMed  CAS  Google Scholar 

  55. Bevan AP, Burgess JW, Yale J-F, Drake PG, Lachance D. Baquiran G, Shaver A, Posner BI: In vivo insulin mimetic effects of pV compounds: Role for tissue targeting in determining potency. Am J Physiol 268: E60–E66, 1995

    PubMed  CAS  Google Scholar 

  56. Bevan AP, Drake PG, Yale J-F, Shaver A, Posner BI: Peroxovanadium compounds: Biological actions and mechanism of insulin-mimesis. Mol Cell Biochem 153: 49–58, 1995

    Article  PubMed  CAS  Google Scholar 

  57. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C: Mechanism of inhibition of proteintyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272: 843–851, 1997

    Article  PubMed  CAS  Google Scholar 

  58. Fantus IG, Kadota S, Deragon G, Foster B, Posner BI: Pervanadate [peroxides of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor kinase. Biochemistry 28: 8864–8871, 1989

    Article  PubMed  CAS  Google Scholar 

  59. Kadota S, Fantus IG, Deragon G, Guyada HJ, Hersh B, Posner BI: Stimulation of insulin-like growth factor 2 receptor binding and insulin receptor kinase activity in rat adipocytes. Effects of vanadate and H2O2. J Biol Chem 262: 8252–8256, 1987

    PubMed  CAS  Google Scholar 

  60. Drake PG, Bevan AP, Burgess JW, Bergeron JJM, Posner BI: A role for tyrosine phosphorylation in both activation and inhibition of the insulin receptor tyrosine kinase in vivo. Endocrinology 137: 4960–4968, 1996

    Article  PubMed  CAS  Google Scholar 

  61. Tavare JM, Ramos P, Ellis L: An assessment of human insulin receptor phosphorylation and exogenous kinase activity following deletion of 69 residues from the carboxy-terminus of the receptor β-subunit. Biochem Biophys Res Comm 188: 86–93, 1992

    Article  PubMed  CAS  Google Scholar 

  62. Kaliman P, Baron V, Alengrin F, Takata Y, Webster NJG, Olefsky JM, Van Obberghen E: The insulin receptor C-terminus is involved in the regulation of the receptor kinase activity. Biochemistry 32: 9539–9544, 1993

    Article  PubMed  CAS  Google Scholar 

  63. Shechter Y: Insulin-mimetic effects of vanadate: Possible implications for future treatment of diabetes. Diabetes 39: 1–5, 1990

    Article  PubMed  CAS  Google Scholar 

  64. Shechter Y, Li J, Meyerovitch J, Gefel D, Bruck R, Elberg G, Miller DS, Shisheva A: Insulin-like actions of vanadate are mediated in an insulinreceptor-independent manner via non-receptor protein tyrosine kinases and protein phosphotyrosine phosphatases. Mol Cell Biochem 153: 39–47, 1995

    Article  PubMed  CAS  Google Scholar 

  65. Tracey AS, Gressner MJ: Interaction of vanadate with phenol and tyrosine: Implications for the effects of vanadate on systems regulated by tyrosine phosphorylation. Proc Natl Acad Sci USA 83: 609–613, 1986

    Article  PubMed  CAS  Google Scholar 

  66. Domingo JL, Gomez M, Sanchez DJ, Llobet JM, Keen CL: Toxicology of vanadium compounds in diabetic rats: The action of chelating agents on vanadium accumulation. Mol Cell Biochem 153: 233–240, 1995

    Article  PubMed  CAS  Google Scholar 

  67. Yale J-F, Lachance D, Bevan AP, Vigeant C, Shaver A, Posner BI: Hypoglycémie effects of peroxovanadium compounds in Sprague-Dawley and diabetic BB rats. Diabetes 44: 1274–1279, 1995

    Article  PubMed  CAS  Google Scholar 

  68. Eriksson JW, Lonnroth P, Smith U: Vanadate increases cell surface insulin binding and improves insulin sensitivity in both normal and insulin-resistant rat adipocytes. Diabetologia 35: 510–516, 1992

    Article  PubMed  CAS  Google Scholar 

  69. Lonnroth P, Eriksson JW, Posner BI, Smith U: Peroxovanadate but not vanadate exerts insulin-like effects in human adipocytes. Diabetologia 36: 113–116, 1993

    Article  PubMed  CAS  Google Scholar 

  70. Eriksson JW, Lonnroth P, Posner BI, Shaver A, Wesslau C, Smith UPG: A stable peroxovanadium compound with insulin-like action in human fat cells. Diabetologia 39: 235–242, 1996

    Article  PubMed  CAS  Google Scholar 

  71. Hashimoto N, Feener EP, Zhang W-R, Goldstein BJ: Insulin receptor protein tyrosine phosphatases. Leukocyte common antigen-related Phosphatase rapidly deactivates the insulin receptor kinase by preferential dephosphorylation of the receptor regulatory domain. J Biol Chem 267: 13811–13814, 1992

    PubMed  CAS  Google Scholar 

  72. Ramachandran C, Aebersold R, Tonks NK, Pot DA: Sequential dephosphorylation of a multiply phosphorylated insulin receptor peptide by protein tyrosine phosphatases. Biochemistry 31: 4232–4238, 1992

    Article  PubMed  CAS  Google Scholar 

  73. Zhang ZY, Thieme-Sefler AM, Maclean D, McNamara DJ, Dobrusin EM, Sawyer TK, Dixon JE: Substrate specificity of the protein tyrosine phosphatases. Proc Natl Acad Sci USA 90: 4446–4450, 1993

    Article  PubMed  CAS  Google Scholar 

  74. Cho H, Krishnaraj R, ltoh M, Kitas E, Bannwarth W, Saito H, Walsh CT: Substrate specificity’s of catalytic fragments of protein tyrosine phosphatases (HPTP beta, LAR, and CD45) toward phosphotyrosylpeptide substrates and thiophosphotyrosylated peptides as inhibitors. Protein Science 2: 977–984, 1993

    Article  PubMed  CAS  Google Scholar 

  75. Liotta AS, Kole HK, Fales HM, Roth R, Bernier M: A synthetic tris-sulfotyrosyl dodecapeptide analogue of the insulin receptor 1146-kinase domain inhibits tyrosine dephosphorylation of the insulin receptor in situ. J Biol Chem 269: 22996–23001, 1994

    PubMed  CAS  Google Scholar 

  76. Kole HK, Garant MJ, Kole S, Bernier M: A peptide based proteintyrosine Phosphatase inhibitor specifically enhances insulin receptor function in intact cells. J Biol Chem 271: 14302–14307, 1996

    Article  PubMed  CAS  Google Scholar 

  77. Tonks NK, Neel BJ: From form to function: Signalling by protein tyrosine phosphatases. Cell 87: 365–368, 1996

    Article  PubMed  CAS  Google Scholar 

  78. Goldstein BJ: Regulation of insulin receptor signalling by proteintyrosine dephosphorylation. Receptor 3: 1–15, 1993

    PubMed  CAS  Google Scholar 

  79. Zhang W-R, Li P-M, Oswald MA, Goldstein BJ: Modulation of insulin signal transduction by eutopic overexpression of the receptor-type protein tyrosine Phosphatase LAR. Mol Endocrinol 10: 575–584, 1996

    Article  PubMed  CAS  Google Scholar 

  80. Moller NPH, Moller KB, Lammers R, Kharitonenkov A, Hoppe E, Wiberg FC, Sures I, Ullrich A: Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases a and 8. J Biol Chem 270: 23126–23131, 1995

    Article  PubMed  CAS  Google Scholar 

  81. Kenner KA, Anyanwu E, Olefsky JM, Kusari J: Protein-tyrosine Phosphatase 1B is a negative regulator of insulin-and insulin-like growth factor-1-stimulated signalling. J Biol Chem 271: 19810–19816, 1996

    Article  PubMed  CAS  Google Scholar 

  82. Kulas DT, Zhang W-R, Goldstein BJ, Furianetto RW, Mooney RA: Insulin receptor signalling is augmented by antisense inhibition of the protein tyrosine Phosphatase LAR. J Biol Chem 270: 2435–2438, 1995

    Article  PubMed  CAS  Google Scholar 

  83. Ahmad F, Li P-M, Meyerovitch J, Goldstein BJ: Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine Phosphatase 1B in negative regulation of insulin action pathway. J Biol Chem 270: 20503–20508, 1995

    Article  PubMed  CAS  Google Scholar 

  84. Rocchi S, Tartare-Deckert S, Swaka-Verhelle D, Gamha A, Van Obberghen E: Interaction of SH2-containing protein tyrosine Phosphatase-2 with the insulin receptor and the insulin-like growth factor-1 receptor: Studies of the domains involved using the yeast two-hybrid system. Endocrinology 137: 4944–4952, 1996

    Article  PubMed  CAS  Google Scholar 

  85. Arrandale JM, Gore-Wilise A, Rocks S, Ren J-M, Zhu J, Davis A, Livingston JN, Rabin DU: Insulin signalling in mice expressing reduced levels of Syp. J Biol Chem 271: 21353–21358, 1996

    Article  PubMed  CAS  Google Scholar 

  86. Ahmad F, Goldstein BJ: Functional association between the insulin receptor and the transmembrane protein-tyrosine Phosphatase LAR in intact cells. J Biol Chem 272: 448–457, 1997

    Article  PubMed  CAS  Google Scholar 

  87. King GL, Johnson SM: Receptor-mediated transport of insulin across endothelial cells. Science 227: 1583–1586, 1985

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Drake, P.G., Posner, B.I. (1998). Insulin receptor-associated protein tyrosine phosphatase(s): Role in insulin action. In: Srivastava, A.K., Posner, B.I. (eds) Insulin Action. Developments in Molecular and Cellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5647-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5647-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7584-5

  • Online ISBN: 978-1-4615-5647-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics