Skip to main content

Role of binding proteins to IRS-1 in insulin signalling

  • Chapter
Insulin Action

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 24))

Abstract

Insulin elicits its divergent metabolic and mitogenic effects by binding to its specific receptor, which belongs to the family of receptor tyrosine kinases. The activated insulin receptor phosphorylates the intracellular substrate IRS-1, which then binds various signalling molecules that contain SRC homology 2 domains, thereby propagating the insulin signal. Among these IRS-1-binding proteins, the Grb2-Sos complex and the protein tyrosine Phosphatase SHP-2 transmit mitogenic signals through the activation of Ras, and phosphoinositide 3-kinase is implicated in the major metabolic actions of insulin. Although substantial evidence indicates the importance of IRS-1 in insulin signal transduction, the generation of IRS-1-deficient mice has revealed the existence of redundant signalling pathways. (Mol Cell Biochem 182: 13-22, 1998)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnbaum MJ: The insulin-sensitive glucose transporter. Int Rev Cytol 137: 239–297, 1993

    Article  Google Scholar 

  2. O’Brien RM, Granner DK: Regulation of gene expression by insulin. Biochem J 278: 609–619, 1991

    PubMed  Google Scholar 

  3. Sparks JD, Sparks CE: Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochim Biophys Acta 1251: 9–32, 1994

    Google Scholar 

  4. Kimball SR, Vary TC, Jefferson LS: Regulation of protein synthesis by insulin. Annu Rev Physiol 56: 321–348, 1994

    Article  PubMed  CAS  Google Scholar 

  5. Lee J, Pilch PF: The insulin receptor: Structure, function, and signalling. Am J Physiol 266: C319–C334, 1994

    PubMed  CAS  Google Scholar 

  6. Schlessinger J: SH2/SH3 signalling proteins. Curr Opin Genet Dev 4: 25–30, 1994

    Article  PubMed  CAS  Google Scholar 

  7. Myers MG Jr, Sun XJ, White MF: The 1RS-1 signalling system. Trends Biochem Sci 19: 289–294, 1994

    Article  PubMed  CAS  Google Scholar 

  8. Myers MG Jr, White MF: Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol 36: 615–658, 1996

    Article  PubMed  CAS  Google Scholar 

  9. White MF, Maron R, Khan CR: Insulin rapidly stimulates tyrosine phosphorylation of a Mr 185, 000 protein in intact cells. Nature 318: 183–186, 1985

    Article  PubMed  CAS  Google Scholar 

  10. Rothenberg PL, Lane WS, Karasik A, Backer J, White MF, Khan CR: Purification and partial sequence analysis of ppl85, the major cellular substrate of the insulin receptor tyrosine kinase. J Biol Chem 266: 8302–8311, 1991

    PubMed  CAS  Google Scholar 

  11. Sun XJ, Rothenberg P, Khan CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein B J, Khan CR: Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352: 73–77, 1991

    Article  PubMed  CAS  Google Scholar 

  12. White MF, Kahn CR: The insulin signalling system. J Biol Chem 269: 1–4, 1994

    PubMed  CAS  Google Scholar 

  13. Sun XJ, Crimmins DL, Myers MG Jr, Miralpeix M, White MF: Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 13: 7418–7428, 1993

    PubMed  CAS  Google Scholar 

  14. Skolinik KY, Lee C-H, Batzer A, Vicentini LM, Zhou M, Daly R, Myers MG Jr, Backer JM, Ullrich A, White MF, Schlessinger J: The SH2/ SH3 domains containing protein GRB2 interacts with tyrosine-phosphorylated IRS-1 and She: Implications for insulin control of ras signalling. EMBO J 12: 1929–1936, 1993

    Google Scholar 

  15. Myers MG Jr, Wang LM, Sun XJ, Zhang YT, Yenush L, Schlessinger J, Pierce JH, White MF: The role of IRS-1/GRB2 complexes in insulin signalling. Mol Cell Biol 14: 3577–3587, 1994

    PubMed  CAS  Google Scholar 

  16. Sugimoto S, Wandness TJ, Shoelsen SE, Neel BG, Walsh CT: Activation of the SH2-containing protein tyrosine Phosphatase, SH-PTP2, by phosphotyrosine containing peptides derived from insulin receptor substrate-1. J Biol Chem 269: 13614–13622, 1994

    PubMed  CAS  Google Scholar 

  17. Haslam RJ, Koide HB, Hemmings BA: Pleckstrin domain homology. Nature 363: 309–310, 1993

    Article  PubMed  CAS  Google Scholar 

  18. Mayer BJ, Ren R, Clark KL, Baltimore D: A putative modular domain present in diverse signalling proteins. Cell 73: 629–630, 1993

    Article  PubMed  CAS  Google Scholar 

  19. Musacchio A, Gibson T, Rice P, Thompson J, Saraste M: The PH domain: A common piece in the structural patchwork of signalling proteins. Trends Biochem Sci 18: 342–348, 1993

    Article  Google Scholar 

  20. Touhara K, Inglese J, Pitcher JA, Shaw G, Lefkowitz RJ: Binding of G protein beta gamma-subunits to pleckstrin homology domains. J Biol Chem 269: 10217–10220, 1994

    PubMed  CAS  Google Scholar 

  21. Yao L, Kawakami Y, Kawakami T: The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci USA 91: 9175–9179, 1994

    Article  PubMed  CAS  Google Scholar 

  22. Harlan JE, Hajduk PJ, Yoon HS, Fesik SW: Pleckstrin homology domains bind to phosphatidylinositol-4, 5-bisphosphate. Nature 371: 168–170, 1994

    Article  PubMed  CAS  Google Scholar 

  23. Yenush L, Makati KJ, Smith-Hall J, Ishibashi O, Myers MG Jr, White MF: The pleckstrin homology domain is the principle link between the insulin receptor and 1RS-1. J Biol Chem 271: 24300–24306, 1996

    Article  PubMed  CAS  Google Scholar 

  24. Craparo A, O’Neill TJ, Gustafson TA: Non-SH2 domains within insulin receptor substrate 1 and She mediate their phosphotyrosine dependent interaction with the NPEY motif of the insulin like growth factor 1 receptor. J Biol Chem 270: 15639–15643, 1995

    Article  PubMed  CAS  Google Scholar 

  25. Wolf G, Trüb T, Ottinger E, Groninga L, Lynch A, White MF, Miyazaki M, Lee J, Shoelsen SE: PTB domains of IRS-1 and She have distinct but overlapping binding specificity. J Biol Chem 270: 27402–27410, 1995

    Google Scholar 

  26. Kavanaugh WM, Truck CW, Williams LT: PTB domain binding to signalling proteins through a sequence motif containing phosphotyrosine. Science 268: 1177–1179, 1995

    Article  PubMed  CAS  Google Scholar 

  27. Gustafson TA, He W, Caparo A, Schaub CD, O’Neill TJ: Phosphotyrosine-dependent interaction of She and IRS-1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol Cell Biol 15: 2500–2508, 1995

    PubMed  CAS  Google Scholar 

  28. Backer JM, Schroeder GG, Cahill DA, Ullrich A, Siddle K, White MF: Cytoplasmic juxtamembrane region of the insulin receptor: A critical role in ATP binding, endogenous substrate phosphorylation, and insulin-stimulated bioeffects in CHO cells. Biochemistry 30: 6366–6372, 1991

    Article  PubMed  CAS  Google Scholar 

  29. Yonezawa K, Ando A, Kaburagi Y, Yamamoto-Honda R, Kitamura T, Hara K, Nakafuku M, Okabayashi Y, Kadowaki T, Kaziro Y, Kasuga M: Signal transduction pathways from insulin receptors to Ras. Analysis by mutant insulin receptors. J Biol Chem 269: 4634–4640, 1994

    CAS  Google Scholar 

  30. Eck MJ, Dhe-Paganon S, Trüb T, Notle RT, Shoelson SE: Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85: 695–705, 1996

    Article  PubMed  CAS  Google Scholar 

  31. Zhou M-M, Ravichandran KS, Olenjniczak ET, Petros AM, Meadows RP, Harlan JE, Wade WS, Burakoff SJ, Fesik SW: Structure and ligand recognition of the phosphotyrosine binding domain of She. Nature 378: 584–592, 1995

    Article  PubMed  CAS  Google Scholar 

  32. Lemmon MA, Ferguson KM, Schlessinger J: PH domain: Diverse sequences with a common fold recruit signalling molecules to the cell surface. Cell 85: 621–624, 1996

    Article  PubMed  CAS  Google Scholar 

  33. Carpenter LC, Cantley LC: Phosphoinositide kinases. Curr Opin Cell Biol 8: 153–158, 1996

    Article  PubMed  CAS  Google Scholar 

  34. Yonezawa K, Ueda H, Hara K, Nishida K, Ando A, Chavanieu A, Matsuba H, Shii K, Yokono K, Fukui Y, Calas B, Grigorescu F, Dhand R, Gout I, Otsu M, Waterfield M, Kasuga M: Insulin-dependent formation of a complex containing an 85 kDa subunit of phosphatidylinositol 3-kinase and tyrosine-phosphorylated insulin receptor substrate 1. J Biol Chem 267: 25958–25966, 1992

    PubMed  CAS  Google Scholar 

  35. Backer JM, Myers MG Jr, Shoelsen SE, Chin DJ, Sun XJ, Mirapleix M, Hu P, Margolis B, Skolnik KY, Schlessinger J, White MF: Phosphatidylinositol 3’-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 9: 3469–3479, 1992

    Google Scholar 

  36. Hu Q, Klippel A, Muslin AJ, Fantl WJ, Williams LT: Ras-dependent induction of cellular responses by constitutive active phosphatidylinositol 3-kinase. Science 268: 100–102, 1995

    Article  PubMed  CAS  Google Scholar 

  37. Dhand R, Hara K, Hiles I, Bax B, Gout I, Pnayotou G, Fry MJ, Yonezawa K, Kasuga M, Waterfield MD: PI 3-kinase: Structural and functional analysis of intersubunit interaction. EMBO J 13: 511–521, 1994

    PubMed  CAS  Google Scholar 

  38. Klippel A, Escobedo JA, Hirano M, Williams LT: The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol 14: 2675–2685, 1994

    Article  PubMed  CAS  Google Scholar 

  39. Myers MG Jr, Backer JM, Sun XJ, Shoelsen SE, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF: IRS-1 activates the phosphatidylinositol 3’-kinase by associating with the src homology 2 domain of p85. Proc Natl Acad Sci USA 89: 10350–10354, 1992

    Article  PubMed  CAS  Google Scholar 

  40. Pons S, Asano T, Glasheen E, Miralpeix M, Zhang Y, Fisher TL, Myers MG Jr, Sun XJ, White MF: The structure and function ol p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol Cell Biol 15: 4453–4465, 1995

    PubMed  CAS  Google Scholar 

  41. Hara K, Yonezawa K, Sakaue H, Ando A, Kotani K, Kitamura T, Kitamura Y, Ueda H, Stephens L, Jackson T R, Hawkins PT, Dhand R, Clark AE, Holman GD, Waterfield MD, Kasuga M: 1-Phosphatidylinositol 3-kinase activity is required for insulin stimulated glucose transport but not for Ras activation in CHO cells. Proc Natl Acad Sci USA 91: 7415–7419, 1994

    Article  PubMed  CAS  Google Scholar 

  42. Quon MJ, Chen H, Ing BR, Liu M-L, Zarnowski MJ, Yonezawa K, Kasuga M, Cushman SW, Taylor SI: Roles of 1-phosphatidylinositol 3-kinase and ras in regulating translocation of GLUT4 in transfected rat adipose cells. Mol Cell Biol 15: 5403–5411, 1995

    PubMed  CAS  Google Scholar 

  43. Kotani K, Carozzi AJ, Sakaue H, Hara K, Robinson LJ, Clark SF, Yonezawa K, James DE, Kasuga M: Requirement for phosphoinositide 3-kinase in insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. Biochem Biophys Res Commun 209: 343–348, 1995

    Article  PubMed  CAS  Google Scholar 

  44. Ui M, Okada T, Hazeki K, Hazeki O: Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem Sci 20: 303–307, 1994

    Article  Google Scholar 

  45. Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. J Biol Chem 269: 3568–3573, 1994

    PubMed  CAS  Google Scholar 

  46. Clarke JF, Young PW, Yonezawa K, Kasuga M, Holman GD: Inhibition of the translocation of GLUT4 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J 300: 631–635, 1994

    PubMed  CAS  Google Scholar 

  47. Rhan T, Ridderstråle M, Tronqvist H, Maganielllo V, Fredrikson G, Belfrage P, Degerman E: Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cGMP-inhibited cAMP Phosphodiesterase in rat adipocytes. FEBS Lett 350: 314–318, 1994

    Article  Google Scholar 

  48. Moule SK, Edgell NJ, Welsh GI, Diggle TA, Foulstone EJ, Heesom KJ, Proud CG, Denton RM: Multiple signalling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem J 311: 595–601, 1995

    PubMed  CAS  Google Scholar 

  49. Yamamoto-Honda R, Tobe K, Kaburagi Y, Ueki K, Asai S, Yachi M, Shirouzu M, Akanuma Y, Yokoyama S, Yazaki Y, Kadowaki T: Upstream mechanism of glycogen synthase activation by insulin and insulinlike growth factor-1. Glycogen synthase activation is antagonized by wortmannin or LY294002 but not by rapamycin or by inhibiting p21ras. J Biol Chem 270: 2729–2734, 1995

    Article  PubMed  CAS  Google Scholar 

  50. Sakaue H, Hara K, Noguchi T, Matozaki T, Kotani K, Ogawa W, Yonezawa K, Waterfield MD, Kasuga M: Ras-independent and wortmannin-sensitive activation of glycogen synthase by insulin in Chinese hamster ovary cells. J Biol Chem 270: 11304–11309, 1995

    Article  PubMed  CAS  Google Scholar 

  51. Welsh GI, Foulstone EJ, Young SW, Tavaré JM, Proud CG: Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase kinase-3 and mitogen-activated protein kinase. Biochem J 303: 15–20, 1994

    PubMed  CAS  Google Scholar 

  52. Mendez R, Myers MG Jr, White MF, Rhoads R: Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin require insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol Cell Biol 16: 2857–2864, 1996

    PubMed  CAS  Google Scholar 

  53. von Mateuffel SR, Gingras A-C, Ming X-F, Sonnenberg N: 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc Natl Acad Sci USA 93: 4076–4080, 1996

    Article  Google Scholar 

  54. Brunn GJ, Williams J, Sabers C, Widerrecht G, Lawrence JC Jr, Abraham RT: Direct inhibition of the signalling function of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15: 5265–5267, 1996

    Google Scholar 

  55. Sutherland C, O’Brien RM, Granner DK: Phosphatidylinositol 3-kinase, but not p70/p85 ribosomal S6 protein kinase, is required for the regulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by insulin. J Biol Chem 270: 15501–15506, 1995

    Article  PubMed  CAS  Google Scholar 

  56. Kotani K, Yonezawa K, Hara K, Ueda H, Kitamura Y, Sakaue H, Ando A, Chavanieu A, Calas B, Grigorecu F, Nishiyama M, Waterfield MD, Kasuga M: Involvement of phosphoinositide 3-kinase in insulin-or IGF-1-induced membrane ruffling. EMBO J 13: 2313–2321, 1994

    PubMed  CAS  Google Scholar 

  57. Hall A: Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 10: 31–53, 1994

    Article  PubMed  CAS  Google Scholar 

  58. Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J: PDGF-and insulin-dependent pp70s6k activation mediated by phosphatidylinositol-3-OH kinase. Nature 370: 71–75, 1994

    Article  PubMed  CAS  Google Scholar 

  59. Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Khan RC: Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 14: 4902–4911, 1994

    PubMed  CAS  Google Scholar 

  60. Hara K, Yonezawa K, Sakaue H, Kotani K, Kotani K, Kojima A, Waterfield M D, Kasuga M: Normal activation of p70 S6 kinase by insulin in cells overexpressing a dominant negative 85 kD subunit of phosphoinositide 3-kinase. Biochem Biophys Res Commun 208: 735–741, 1995

    Article  PubMed  CAS  Google Scholar 

  61. Khon AD, Kovacina KS, Roth RA: Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/ thr kinase. EMBO J 14: 4288–4295, 1995

    Google Scholar 

  62. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA: Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15: 6541–6551, 1996

    PubMed  CAS  Google Scholar 

  63. Volinia S, Dhand R, Vanhaesebroeck B, MacDougall LK, Stein R, Zvelebil MJ, Domin J, Panaretou C, Waterfield MD: A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vpsl5p protein sorting system. EMBO J 14: 3339–3348, 1995

    PubMed  CAS  Google Scholar 

  64. Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanov S, Vanhaesebroeck B, Dhand R, Nurberg B, Gierschik P, Seedorf K, Hsuan JJ, Waterfield MD, Wetzker R: Cloning and characterization of a G-protein-activated human phosphoinositide-3 kinase. Science 269: 690–693, 1995

    Article  PubMed  CAS  Google Scholar 

  65. Kotani K, Hara K, Kotani K, Yonezawa K, Kasuga M: Phosphoinositide 3-kinase as an upstream regulator of the small GTP-binding protein rac in the insulin signalling of membrane ruffling. Biochem Biophys Res Commun 208: 985–990, 1995

    Article  PubMed  CAS  Google Scholar 

  66. Hawkins PT, Eguinoa A, Qui R-G, Stoke D, Cooke FT, Walters R, Wennström S, Claesson-Welsh L, Evans T, Symons M, Stephens L: PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr Biol 5: 393–403, 1995

    Article  PubMed  CAS  Google Scholar 

  67. Tsakiridis T, Taha C, Grinstein S, Klip A: Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J Biol Chem 271: 19663–19667, 1996

    Google Scholar 

  68. Marcusohn J, Isakoff SJ, Rose E, Symons M, Skolnik KY: The GTP-binding protein Rac does not couple PI 3-kinase to insulin-stimulated glucose transport in adipocytes. Curr Biol 5: 1296–1302, 1995

    Article  PubMed  CAS  Google Scholar 

  69. Franke TF, Yang S-I, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN: The protein kinase encoded by the Akt protooncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81: 727–736, 1995

    Article  PubMed  CAS  Google Scholar 

  70. Burgring BMT, Coffer PJ: Protein kinase B (c-Akt) in phosphatidyl-inositol-3-OH kinase signal transduction. Nature 376: 599–602, 1995

    Article  Google Scholar 

  71. James SR, Downes CP, Gigg R, Grove SJA, Holmes AB, Alessi DR: Specific binding of the AKT-1 protein-kinase to phosphatidylinositol 3, 4, 5-triphosphate without subsequent activation. Biochem J 315: 709–713, 1996

    PubMed  CAS  Google Scholar 

  72. Kohn AD, Takeuchi F, Roth RA: Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 271: 21920–21926, 1996

    Article  PubMed  CAS  Google Scholar 

  73. Cross DAK, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789, 1995

    Article  PubMed  CAS  Google Scholar 

  74. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik KY, Bar-Sagi D, Schlessinger J: The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signalling. Cell 70: 431–442, 1992

    Article  PubMed  CAS  Google Scholar 

  75. Baltensperger K, Kozma LM, Cherniack AD, Klaulund JK, Chawala A, Banerjee U, Czech MP: Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signalling complexes. Science 260: 1950–1952, 1993

    Article  PubMed  CAS  Google Scholar 

  76. Skolnik KY, Batzer A, Li N, Lee C-H, Lowenstein E, Mohammadi M, Margolis B, Schlessinger J: The function of GRB2 in linking the insulin receptor to ras signalling pathways. Science 260: 1953–1955, 1993

    Article  PubMed  CAS  Google Scholar 

  77. Roberts TM: A signal chain of events. Nature 360: 534–535, 1992

    Article  PubMed  CAS  Google Scholar 

  78. Moller W, Bos JL: The role of ras proteins in insulin signal transduction. Horm Metab Res 24: 214–218, 1992

    Article  PubMed  Google Scholar 

  79. Sakaue M, Bowtell D, Kasuga M: A dominant-negative mutant of mSOS1 inhibits insulin-induced Ras activation and reveals Ras-dependent and — independent insulin signalling pathways. Mol Cell Biol 15: 379–388, 1995

    PubMed  CAS  Google Scholar 

  80. Waters SB, Yamauchi K, Pessin JE: Functional expression of insulin receptor substrate-1 is required for insulin-stimulated mitogenic signalling. J Biol Chem 268: 22231–22234, 1993

    PubMed  CAS  Google Scholar 

  81. Rose DW, Saltiel AR, Majumdar M, Decker SJ, Olefsky JM: Insulin receptor substrate 1 is required for insulin-mediated mitogenic signal transduction. Proc Natl Acad Sci USA 91: 797–801, 1994

    Article  PubMed  CAS  Google Scholar 

  82. Lazar DF, Wiese RJ, Brady MJ, Mastick CC, Waters SB, Yamauchi K, Pessin JE, Cuatrecasas P, Saltiel AR: Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin J Biol Chem 270: 20801–20807, 1995

    Article  PubMed  CAS  Google Scholar 

  83. Ando A, Yonezawa K, Gout I, Nakata T, Ueda H, Hara K, Kitamura Y, Noda Y, Takenawa T, Hirokawa N, Kasuga M: A complex of GRB2-dynamin binds to tyrosine phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO J 13: 3033–3038, 1994

    PubMed  CAS  Google Scholar 

  84. Wang ZX, Moran MF: Requirement for the adapter protein GRB2 in EGF receptor endocytosis. Science 272: 1935–1939, 1996

    Article  PubMed  CAS  Google Scholar 

  85. Sasaoka T, Ishihara H, Sawa T, Ishiki M, Morioka H, Imamura T, Usui I, Takata Y, Kobayashi M: Functional importance of amino-terminal domain of She for interaction with insulin and epidermal growth factor receptors in phosphorylation-independent manner. J Biol Chem 271: 20082–20087, 1996

    Article  PubMed  CAS  Google Scholar 

  86. Sasaoka T, Drazrin B, Leitner JW, Langlois WJ, Olefsky JM: She is the predominant signalling molecule coupling insulin receptors to activation of guanine nucleotide releasing factor and p21ras-GTP formation. J Biol Chem 269: 10734–10738, 1994

    PubMed  CAS  Google Scholar 

  87. Kuhné MR, Pawson T, Lienhard GE, Feng G-S: The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine Phosphatase Syp J Biol Chem 268: 11479–11481, 1993

    PubMed  Google Scholar 

  88. Matozaki T, Kasuga M: Roles of protein tyrosine phosphatases in growth factor signalling. Cell Signal 8: 13–19, 1996

    Article  PubMed  CAS  Google Scholar 

  89. Xiao S, Roses DW, Sasaoka T, Maegawa H, Bruke TR Jr, Roller PP, Shoelsen SE, Olefsky JM: Syp is a positive mediator of growth factor-stimulated mitogenic signal transduction. J Biol Chem 269: 21244–21248, 1994

    PubMed  CAS  Google Scholar 

  90. Noguchi T, Matozaki T, Horita K, Fujioka Y, Kasuga M: Role of SH-PTP2, a protein-tyrosine Phosphatase with src homology-2 domains, in insulin-stimulated Ras activation. Mol Cell Biol 14: 6674–6682, 1994

    PubMed  CAS  Google Scholar 

  91. Yamauchi K, Milarski KL, Saltiel AR, Pessin JE: Protein-tyrosine Phosphatase SH-PTP2 is a required positive effector for insulin downstream signalling. Proc Natl Acad Sci USA 92: 664–668, 1995

    Article  PubMed  CAS  Google Scholar 

  92. Herbst RP, Carroll PM, Allard JD, Schilling J, Raabe T, Simon MA: Daughter of sevenless is a substrate of the phosphotyrosine Phosphatase corkskrew and functions during sevenless signalling. Cell 85: 899–909, 1996

    Article  PubMed  CAS  Google Scholar 

  93. Sawada T, Kim L, Saltiel AR: Expression of a catalytically inert Syp blocks activation of MAP kinase pathway downstream of p21ras. Biochem Biophys Res Commun 214: 737–743, 1995

    Article  PubMed  CAS  Google Scholar 

  94. Milarski KL, Saltiel AR: Expression of catalytically inactive Syp Phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J Biol Chem 269: 21239–21243, 1994

    PubMed  CAS  Google Scholar 

  95. Noguchi T, Matozaki T, Fujioka Y, Yamao T, Tsuda M, Takada T, Kasuga M: Characterization of a 115 kDa protein that binds to SH-PTP2, a protein-tyrosine Phosphatase with Src homology 2 domains, in Chinese hamster ovary cells. J Biol Chem 271: 27652–27658, 1996

    Article  PubMed  CAS  Google Scholar 

  96. Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N, Tsuda M, Takada T, Kasuga M: A novel membrane glycoprotein, SHPS-1, that binds the SH-2-domain-containing protein tyrosine Phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol 16: 6887–6889, 1996

    PubMed  CAS  Google Scholar 

  97. Tobe K, Sabe H, Yamamoto T, Yamauchi T, Asai S, Kaburagi Y, Tamemoto H, Ueki K, Kimura H, Akanuma Y, Yazaki Y, Hanafusa H, Kadowaki T: Csk enhances insulin-stimulated dephosphorylation of focal adhesion proteins. Mol Cell Biol 16: 4765–4772, 1996

    PubMed  CAS  Google Scholar 

  98. Lee C-H, Li W, Nishimura R, Zhou M, Batzer AG, Myers MG Jr, White MF, Schelessinger J, Skolnik KY: Nck associates with the SH2 domaindocking protein IRS-1 in insulin-stimulated cells. Proc Natl Acad Sci USA 90: 11713–11717, 1993

    Article  PubMed  CAS  Google Scholar 

  99. Fei ZL, D’Ambrosio C, Li S, Surmacz E, Baserga R: Association of insulin receptor substrate 1 with simian virus 40 large T antigen. Mol Cell Biol 15: 4232–4239, 1995

    PubMed  CAS  Google Scholar 

  100. Vouli K, Rouslahti E: Association of insulin receptor substrate-1 with integrins. Science 266: 1576–1578, 1994

    Article  Google Scholar 

  101. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satho S, Sekihara H, Yoshioka S, Horikoshi H, Furuta Y, Ikawa Y, Kasuga M, Yazaki Y, Aiza wa S: Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372: 182–186, 1994

    Article  PubMed  CAS  Google Scholar 

  102. Araki E, Lipes MA, Patti M-E, Briining JC, Haag B III, lohnson RS, Khan CR: Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372: 186–190, 1994

    Article  PubMed  CAS  Google Scholar 

  103. Patti ME, Sun XJ, Bruening JC, Araki E, Lipes MA, White MF, Kahn CR: 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1 deficient mice. J Biol Chem 270: 24670–24673, 1995

    Article  PubMed  CAS  Google Scholar 

  104. Sun XJ, Wang L-M, Zhang Y, Yenush L, Myers MG Jr, Glasheen E, Lane WS, Pierce JH, White MF: Role of IRS-2 in insulin and cytokine signalling. Nature 377: 173–177, 1995

    Article  PubMed  CAS  Google Scholar 

  105. Lavan BE, Lienhard GE: The insulin elicited 60 kDa phosphotyrosine protein in rat adipocytes is associated with phosphatidylinositol 3-kinase. J Biol Chem 268: 5921–5928, 1993

    PubMed  CAS  Google Scholar 

  106. Hosomi Y, Shii K, Ogawa W, Matsuba H, Yoshida M, Oka Ja Y, Yokono K, Kasuga M, Baba S, Roth RA: Characterization of a h0 kilodalton substrate of the insulin receptor kinase. J Biol Chem 269: 11498-11502, 1994

    Google Scholar 

  107. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ: A Grb2-associated docking protein in EGF-and insulin-receptor signalling. Nature 379: 560–564, 1996

    Article  PubMed  CAS  Google Scholar 

  108. Yeh TC, Ogawa W, Danielsen AG, Roth RA: Characterization and cloning of a 58/53 kDa substrate of the insulin receptor tyrosine kinase. J Biol Chem 271: 2921–2928, 1996

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ogawa, W., Matozaki, T., Kasuga, M. (1998). Role of binding proteins to IRS-1 in insulin signalling. In: Srivastava, A.K., Posner, B.I. (eds) Insulin Action. Developments in Molecular and Cellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5647-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5647-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7584-5

  • Online ISBN: 978-1-4615-5647-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics