Skip to main content

Genetic manipulation of insulin action and β-cell function in mice

  • Chapter
  • 250 Accesses

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 24))

Abstract

Transgenic and gene targeting approaches have now been applied to a number of genes in order to investigate the metabolic disorders that would result by manipulating insulin action or pancreatic β-cell function in the mouse. The availability of such mutant mice will allow in the future to develop animal models in which the pathophysiologies resulting from polygenic defects might be reconstituted and studied in detail. Such animal models hopefully will lead to better understanding of complex polygenic diseases such as non-insulin-dependent diabetes mellitus (NIDDM). (Mol Cell Biochem 182: 161-168, 1998)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moller DE, Bjorbaek C, Vidai-Pulg A: Candidate genes for insulin resistance. Diabetes Care 19: 396–400, 1996

    Article  PubMed  CAS  Google Scholar 

  2. Shuldiner AR, Silver KD: Candidate genes in non-insulin dependent diabetes mellitus. In: D LeRoith, JM Olelfsky, SI Taylor, (eds). Diabetes Mellitus: A Fundamental and Clinical Text. Lippincott, in press

    Google Scholar 

  3. Kahn CR: Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43: 1066–1084, 1994

    Article  PubMed  CAS  Google Scholar 

  4. De Meyts P: The diabetogenes concept of NIDDM. Adv Exp Med Biol 334: 89–100, 1993

    Article  Google Scholar 

  5. Shafrir E: Animal models of non-insulin dependent diabetes. Diabetes MetabRev 8: 179–208, 1992

    Article  CAS  Google Scholar 

  6. Joshi RL, Lamothe B, Cordonnier N, Mesbah K, Monthioux E, Jami J, Bucchini D: Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J 15: 1542–1547, 1996

    PubMed  CAS  Google Scholar 

  7. Moller DE: Transgenic approaches to the pathogenes is of NIDDM. Diabetes 43: 1394–1401, 1994

    Article  PubMed  CAS  Google Scholar 

  8. Bronson SK, Smithies O: Altering mice by homologous recombination using embryonic stem cells. J Biol Chem 269: 27155–27158, 1994

    PubMed  CAS  Google Scholar 

  9. Benecke H, Flier JS, Rosenthal N, Siddle K, Klein HH, Moller DE: Muscle-specific expression of human insulin receptor in transgenic mice. Diabetes 42: 206–212, 1993

    Article  PubMed  CAS  Google Scholar 

  10. Nishiyama T, Shirotani T, Murakami T, Shimada F, Todaka M, Saito S, Hayashi H, Noma Y, Shima K, Makino H, Shichiri M, Miyazaki JI, Yamamura KI, Ebina Y: Expression of the gene encoding the tyrosine kinase-deficient human insulin receptor in transgenic mice. Gene 141: 187–192, 1994

    Article  PubMed  CAS  Google Scholar 

  11. Chang PY, Benecke H, Le Marchand-Brustel Y, Lawitts J, Moller DE: Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice. J Biol Chem 269: 16034–16040, 1994

    PubMed  CAS  Google Scholar 

  12. Moller DE, Chang PY, Yaspelkis BB III, Flier JS, Wallberg-Henriksson H, Ivy JL: Transgenic mice with muscle-specific insulin resistance develop increased adiposity, impaired glucose tolerance, and dyslipidemia. Endocrinol, in press

    Google Scholar 

  13. Chang PY, Goodyear W, Benecke H, Markuns JS, Moller DE: Impaired insulin signaling in skeletal muscles from transgenic mice expressing kinase-deficient insulin receptors. J Biol Chem 270: 12593–12600, 1995

    Article  PubMed  CAS  Google Scholar 

  14. Chang PY, Le Marchand-Brustel Y, Cheatham LA, Moller DE: Insulin stimulation of mitogen-activated protein kinase, p90∼, and p70 S6 kinase in skeletal muscle of normal and insulin-resistant mice. J Biol Chem 270: 29928–29935, 1995

    Article  PubMed  CAS  Google Scholar 

  15. Schaefer EM, Viard V, Morin J, Ferré P, Pénicaud L, Ramos P, Maika SD, Ellis L, Hammer RE: A new transgenic mouse model of chronic hyperglycemia. Diabetes 43: 143–153, 1994

    Article  PubMed  CAS  Google Scholar 

  16. Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, Asico LD, José PA, Taylor SI, Westphal H: Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genet 12: 106–109, 1996

    Article  PubMed  CAS  Google Scholar 

  17. De Meyts P, Wallach B, Christoffersen CT, Urso B, Gronskov K, Latus W, Yakushiji F, Hondo MM, Shymko RM: The insulin-like growth factorI receptor. Horm Res 42: 152–169, 1994

    Article  PubMed  Google Scholar 

  18. DeChiara TM, Efstratiadis A, Robertson EJ: A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345: 78–80, 1990

    Article  PubMed  CAS  Google Scholar 

  19. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A: Mice carrying null mutations of the genes encoding insulin-like growth factor I (igf1) and type 1 IGFreceptor (igf-lr). Cell 75: 59–72, 1993

    PubMed  CAS  Google Scholar 

  20. Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA: IGF-1 is required for normal embryonic growth in mice. Genes Dev 7: 2609–2617, 1993

    Article  PubMed  CAS  Google Scholar 

  21. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburaji Y, Satoh S, Sekihara H, Yoshioka S, Horikoshi H, Furuta Y, Ikawa Y, KasugaM, Yazaki Y, Aizawa S: Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372: 182–186, 1994

    Article  PubMed  CAS  Google Scholar 

  22. Araki E, Lipes MA, Patti ME, Brüning JC, Haag B III, Johnson RS, Kahn CR: Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 372: 186–190, 1994

    Article  PubMed  CAS  Google Scholar 

  23. Chang PY, Jensen J, Printz RL, Granner DK, Ivy JL, Moller DE: Overexpression of hexokinase II in transgenic mice: Evidence that increased phosphorylation augments muscle glucose uptake. J Biol Chem, in press

    Google Scholar 

  24. Ezaki O, Flores-Riveros JR, Kaestner KH, Gearhart J, Lane MD: Regulated expression of an insulin-responsive glucose transporter (GLUT4) minigene in 3T3-L1 adipocytes and transgenic mice. Proc Natl Acad Sci USA 90: 3348–3352, 1993

    Article  PubMed  CAS  Google Scholar 

  25. Olson AL, Liu ML, Moye-Rowley WS, Buse JB, Bell GI, Pessin JE: Hormonal/metabolic regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J Biol Chem 268: 9839–9846, 1993

    PubMed  CAS  Google Scholar 

  26. Deems RO, Evans JL, Deacon RW, Honer CM, Chu DT, Bürki K, Fillers WS, Cohen DK, Young DA: Expression of human GLUT4 in mice results in increased insulin action. Diabetologia 37: 1097–1104, 1994

    Article  PubMed  CAS  Google Scholar 

  27. Marshall BA, Mueckler MM: Differential effects of GLUT1 or GLUT4 overexpression on insulin responsiveness in transgenic mice. Am J Physiol 267: E738–E744, 1994

    PubMed  CAS  Google Scholar 

  28. Treadway JL, Hargrove DM, Nardone NA, McPherson RK, Russo JF, Milici AJ, Stukenbrok HA, Gibbs EM, Stevenson RW, Pessin JE: Enhanced peripheral glucose utilization in transgenic mice expressing the human GLUT4 gene. J Biol Chem269: 29956-29961, 1994

    Google Scholar 

  29. Hansen PA, Gulve EA, Marshall BA, Gao J, Pessin JE, Holloszy JO, Mueckler M: Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the GLUT4 glucose transporter. J Biol Chem 270: 1679–1684, 1995

    Article  PubMed  CAS  Google Scholar 

  30. Ikemoto S, Thompson KS, Itakura H, Lane MD, Ezaki O: Expression of an insulin responsive glucose transporter (GLUT4) minigene in transgenic mice: Effect of exercise and role in glucose homeostasis. Proc Natl Acad Sci USA 92: 865–869, 1995

    Article  PubMed  CAS  Google Scholar 

  31. Ren JM, Marshall BA, Mueckler MM, McCaleb M, Amatruda JM, Shulman GI: Overexpression of GLUT4 protein in muscle increase basal and insulin-stimulated whole body glucose disposal in conscious mice. J Clin Invest 95: 429–432, 1995

    Article  PubMed  CAS  Google Scholar 

  32. Ikemoto S, Thompson KS, Takahashi M, Itakura H, Lane MD, Ezaki O: High fat diet induced hyperglycemia: Prevention by low level expression of glucose transporter (GLUT4) minigene in transgenic mice. Proc Natl Acad Sci USA 92: 3096–3099, 1995

    Article  PubMed  CAS  Google Scholar 

  33. Gibbs EM, Stock JL, McCoid SC, Stukenbrok HA, Pessin JE, Stevenson RW, Milici AJ, McNeish JD: Glycemie improvement in diabetic mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J Clin Invest 95: 1512–1518, 1995

    Article  PubMed  CAS  Google Scholar 

  34. Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB: Adipose cell hyperplysia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem 268: 22243–22246, 1993

    PubMed  CAS  Google Scholar 

  35. Gnudi L, Tozzo E, Shepherd PR, Bliss JL, Kahn BB: High level overexpression of glucose transporter-4 driven by an adipose-specific promoter is maintained in transgenic mice on a high fat diet, but does not prevent impaired glucose tolerance. Endocrinol 136: 995–1002, 1995

    Article  CAS  Google Scholar 

  36. Tsao TS, Burcelin R, Katz EB, Huang L, Charron MJ: Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes 45: 28–36, 1996

    Article  PubMed  CAS  Google Scholar 

  37. Leturque A, Loizeau M, Vaulont S, Salminen M, Girard J: Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle. Diabetes 45: 23–27, 1996

    Article  PubMed  CAS  Google Scholar 

  38. Marshall BA, Ren JM, Johnson DW, Gibbs EM, Liliquist JS, Soeller WC, Holloszy JO, Mueckler M: Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle. J Biol Chem 268: 18442–18445, 1993

    PubMed  CAS  Google Scholar 

  39. Ren JM, Marshall BA, Gulve EA, Gao J, Johnson DW, Holloszy JO, Mueckler M: Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem 268: 16113–16115, 1993

    PubMed  CAS  Google Scholar 

  40. Gulve EA, Ren JM, Marshall BA, Gao J, Hansen PA, Holloszy JO, Mueckler M: Glucose transport activity in skeletal muscles from transgenic mice overexpressing GLUTI. J Biol Chem 269: 18366–18370, 1994

    PubMed  CAS  Google Scholar 

  41. Katz EB, Stenbit AK, Hatton K, DePinho R, Charron MJ: Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377: 151–155, 1995

    Article  PubMed  CAS  Google Scholar 

  42. Valera A, Pujol A, Pelegrin M, Bosch F: Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 91: 9151–9154, 1994

    Article  PubMed  CAS  Google Scholar 

  43. Manchester J, Skurat AV, Roach P, Hauschka SD, Lawrence JR JC: Increased glycogen accumulation in transgenic mice overexpressing glycogen synthetase in skeletal muscle. Proc Natl Acad Sci USA 93: 10707–10711, 1996

    Article  PubMed  CAS  Google Scholar 

  44. Ferre T, Pujol A, Riu E, Bosch F, Valera A: Correction of diabetic alterations by glucokinase. Proc Natl Acad Sci USA 93: 7225–7230, 1996

    Article  PubMed  CAS  Google Scholar 

  45. Moxham CM, Malbon CC: Insulin action impaired by deficiency of the G-protein subunit Giα2. Nature 379: 840–844, 1996

    Article  PubMed  CAS  Google Scholar 

  46. Ross SR, Graves RA, Spiegelman BM: Targeted expression of a toxin gene to adipose tissue: Transgenic mice resistant to obesity. Genes Dev7: 1318-1324, 1993

    Google Scholar 

  47. Lowell BB, Susulic VS, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS: Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366: 740–742, 1993

    Article  PubMed  CAS  Google Scholar 

  48. Hamann A, Benecke H, Le Marchand-Brustel Y, Susulic VS, Lowell BB, Flier JS: Characterization of insulin resistance and NIDDM in transgenic mice with reduced brown fat. Diabetes 44: 1266–1273, 1995

    Article  PubMed  CAS  Google Scholar 

  49. Kozak LP, Kozak UC, Clarke GT: Abnormal brown and white fat development in transgenic mice overexpressing glycerol 3-phosphate dehydrogenase. Genes Dev 5: 2256–2264, 1991

    Article  PubMed  CAS  Google Scholar 

  50. Cummings DE, Brandon EP, Planas JV, Motamed K, Idzerda RL, McKnight GS: Genetically lean mice result from targeted disruption of the RIIβ subunit of protein kinase A. Nature 382: 622–626, 1996

    Article  PubMed  CAS  Google Scholar 

  51. Taylor SI, Accili D, Imai Y: Insulin resistance or insulin deficiency. Which is the primary cause of NIDDM? Diabetes 43: 735–740, 1994

    PubMed  CAS  Google Scholar 

  52. Bucchini D, Ripoche M-A, Stinnakre M-G, Desbois P, Lorès P, Monthioux E, Absil J, Lepesant J-A, Pictet R, Jami J: Pancreatic expression of human insulin gene in transgenic mice. Proc Natl Acad Sci USA 83: 2511–2515, 1986

    Article  PubMed  CAS  Google Scholar 

  53. Sciden RF, Skoskiewicz MJ, Howie KB, Russell PS, Goodman HM: Regulation of human insulin gene expression in transgenic mice. Nature 321: 525–528, 1986

    Article  Google Scholar 

  54. Schnetzler B, Murakawa G, Abalos D, Halban P, Sciden R: Adaptation to supraphysiologic levels of insulin gene expression in transgenic mice: evidence for the importance of post-transcriptional regulation. J Clin Invest 92: 272–280, 1993

    Article  PubMed  CAS  Google Scholar 

  55. Marban SL, DeLoia JA, Gearhart JD: Hyperinsulinemia in transgenic mice carrying multiple copies of the human insulin gene. Develop Genet 10: 356–364, 1989

    Article  CAS  Google Scholar 

  56. Carroll RJ, Hammer RE, Chan SJ, Swift HH, Rubenstein AH, Steiner DF: A mutant human proinsulin is secreted from islets of Langherans in increased amounts via an unregulated pathway. Proc Natl Acad Sci USA 85: 8943–8947, 1988

    Article  PubMed  CAS  Google Scholar 

  57. Ma YH, Lorès P, Wang J, Jami J, Grodsky GM: Constitutive (pro)insulin release from pancreas of transgenic mice expressing monomeric insulin. Endocrinol 136: 2622–2630, 1995

    Article  CAS  Google Scholar 

  58. Efrat S, Leiser M, Wu YJ, Fusco-DeMane D, Emran OA, Surana M, Jetton TL, Magnuson MA, Weir G, Fleischer N: Ribozyme-mediated attenuation of pancreatic β-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Natl Acad Sci USA 91: 2051–2055, 1994

    Article  PubMed  CAS  Google Scholar 

  59. Ishihara H, Tashiro F, Ikuta K, Asano T, Katagiri H, Inukai K, Kikuchi M, Yazaki Y, Oka Y, Miyazaki JI: Inhibition of pancreatic β-cell glucokinase by antisense RNA expression in transgenic mice: mouse strain-dependent alteration of glucose tolerance. FEBS Lett 371: 329–332, 1995

    Article  PubMed  CAS  Google Scholar 

  60. Epstein PN, Boschero AC, Atwater I, Cai X, Overbeek PA: Expression of yeast hexokinase in pancreatic β-cells of transgenic mice reduces blood glucose, enhances insulin secretion, and decreases diabetes. Proc Natl Acad Sci USA 89: 12038–12042, 1992

    Article  PubMed  CAS  Google Scholar 

  61. Voss-McCowan ME, Bonner-Weir S, Klevay LM, Epstein PN: A yeast hexokinase transgene decreases pancreatic insulin and transiently reduces diabetes. 1: 103–111, 1993

    Google Scholar 

  62. Epstein PN, Overbeek PA, Means AR: Calmodulin-induced early-onset diabetes in transgenic mice. Cell 58: 1067–1073, 1989

    Article  PubMed  CAS  Google Scholar 

  63. Grupe A, Hultgren B, Ryan A, Ma YH, Bauer M, Stewart TA: Transgenic knockouts reveal a critical requirement for pancreatic β-cell glucokinase in maintaining glucose homeostasis. Cell 83: 69–78, 1995

    Article  PubMed  CAS  Google Scholar 

  64. Terauchi Y, Sakura H, Yasuda K, Iwamoto K, Takahashi N, Ito K, Kasai H, Suzuki H, Ueda O, Kamada N, Jishage K, Komeda K, Noda M, Kanazawa Y, Taniguchi S, Miwa I, Akanuma Y, Kodama T, Yazaki Y, Kadowaki T: Pancreatic β-cell-specific targeted disruption of glucokinase gene. J Biol Chem 270: 30253–30256, 1995

    Article  PubMed  CAS  Google Scholar 

  65. Bali D, Svetlanov A, Lee HW, Fusco-DeMane D, Leiser M, Li B, Barzilai N, Surana M, Hou H, Fleischer N, DePinho R, Rossetti L, Efrat S: Animal model for maturity-onset diabetes of the young generated by disruption of the mouse glucokinase gene. J Biol Chem 270: 21464–21467, 1995

    Article  PubMed  CAS  Google Scholar 

  66. Valera A, Solanes G, Fernandez-Alvarez J, Pujol A, Ferrer J, Asins G, Gomis R, Bosch F: Expression of GLUT2 antisense RNA in β-cells of transgenic mice leads to diabetes. J Biol Chem 269: 28543–28546, 1994

    PubMed  CAS  Google Scholar 

  67. Tal M, Wu YJ, Leiser M, Surana M, Lodish H, Fleischer N. Weir G, Efrat S: [Val12]HRAS downregulates GLUT2 in β-cells of transgenic mice without affecting glucose homeostasis. Proc Natl Acad Sci USA 89: 5744–5748, 1992

    Article  PubMed  CAS  Google Scholar 

  68. Yagui K, Yamaguchi T, Kanatsuka A, Shimada F, Huang CI, Tokuyama Y, Ohsawa H, Yamamura KI, Miyazaki JI, Mikata A, Yoshida S, Makino H: Formation of islet amyloid fibrils in beta-secretory granules of transgenic mice expressing human islet amyloid polypeptide/amylin. Eur J Endocrinol 132: 487–496, 1995

    Article  PubMed  CAS  Google Scholar 

  69. Fox N, Schrementi J, Nishi M, Ohagi S, Chan SJ, Heisserman JA, Westermark GT, Leckström A, Westermark P, Steiner DF: Human islet amyloid Polypeptide transgenic mice as a model of non-insulindependent diabetes mellitus (NIDDM). FEBS Lett 323: 40–44, 1993

    Article  PubMed  CAS  Google Scholar 

  70. Höppener JW, Oosterwijk C, van Hulst KL, Verbeek JS. Capel PJ, de Koning EJ, Clark A, Jansz HS, Lips CJ: Molecular physiology of the islet amyloid Polypeptide (IAPP)/amylin gene in man, rat, and transgenic mice. J Cell Biochem 55: 39–53, 1994

    Article  PubMed  Google Scholar 

  71. de Koning EJP, Höppener JWM, Verbeek JS, Oosterwijk C, van Hulst KL, Baker CA, Lips CJM, Morris JF, Clark A: Human islet amyloid Polypeptide accumulates at similar sites in islets of transgenic mice and humans. Diabetes 43: 640–644, 1994

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lamothe, B. et al. (1998). Genetic manipulation of insulin action and β-cell function in mice. In: Srivastava, A.K., Posner, B.I. (eds) Insulin Action. Developments in Molecular and Cellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5647-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5647-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7584-5

  • Online ISBN: 978-1-4615-5647-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics