Skip to main content

Potential mechanism (S) involved in the regulation of glycogen synthesis by insulin

  • Chapter

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 24))

Abstract

Stimulation of glycogen synthesis is one of the major physiological responses modulated by insulin. Although, details of the precise mechanism by which insulin action on glycogen synthesis is mediated remains uncertain, significant advances have been made to understand several steps in this process. Most importantly, recent studies have focussed on the possible role of glycogen synthase kinase-3 (GSK-3) and glycogen bound protein P hosphatase-1 (PP-1G) in the activation of glycogen synthase (GS) — a key enzyme of glycogen metabolism. Evidence is also accumulating to establish a link between insulin receptor induced signaling pathway(s) and glycogen synthesis. This article summarizes the potential contribution of various elements of insulin signaling pathway such as mitogen activated protein K inase (MAPK), protein K inase B (PKB), and p hosphatidyl i nositol 3-k inase (PI3-K) in the activation of GS and glycogen synthesis. (Mol Cell Biochem 182: 135-141, 1998)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen P: In Control of Enzyme Activity, 2nd Edition. Chapman and Hall, New York, 1983, pp 42–71

    Book  Google Scholar 

  2. Mueckler M: Facilitative glucose transporters Eur J Biochem 219: 713–725, 1994

    Article  PubMed  CAS  Google Scholar 

  3. Roach PJ: Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J: 2961–2968, 1990

    Google Scholar 

  4. Roach PJ: Multisite and hierarchal protein phosphorylation. J Biol Chem 266: 14139–14142, 1991

    PubMed  CAS  Google Scholar 

  5. Flotow H, Roach PJ: Synergistic phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase and casein kinase I. Implication for hormonal regulation of glycogen synthase. J Biol Chem 264: 9126–9128, 1989

    PubMed  CAS  Google Scholar 

  6. Nakielny S, Campbell DG, Cohen P: The molecular mechanism by which adrenalin inhibits glycogen synthesis. Eur J Biochem 199: 713–722, 1991

    Article  PubMed  CAS  Google Scholar 

  7. Wang Y, Roach P: Inactivation of rabbit muscle glycogen synthase by glycogen synthase kinase-3. Dominant role of ser-640 (site-3a). J Biol Chem 268: 23876–23980, 1993

    PubMed  CAS  Google Scholar 

  8. Poulter L, Ang SG, Gibson BW, Williams DH, Holmer GFB, Caudwell FB, Pitcher J, Cohen P: Analysis of the in vivo phosphorylation state of rabbit skeletal muscle glycogen synthase by fast-atom-bombardment mass spectrometry. Eur J Biochem 175: 497–510, 1988

    Article  PubMed  CAS  Google Scholar 

  9. De Paoli-Roch AA, Ahmad Z, Roach PJ: Characterization of a rabbit skeletal muscle protein kinase (PCO.7) able to phosphorylate muscle glycogen synthase and phosvitin. J Biol Chem 256: 8955–8962, 1981

    Google Scholar 

  10. Cohen P, Yelawfees D, Aitken A, Donelia-Dean A, Hemmings BA, Parker PJ: Separation and characterization of glycogen synthase kinase-3, glycogen synthase kinase-4, and glycogen synthase kinase-5 from rabbit skeletal muscle. Eur J Biochem 124: 21–35, 1982

    Article  PubMed  CAS  Google Scholar 

  11. Embi N, Parker PJ, Cohen P: A reinvestigation of the phosphorylation of rabbit skeletal muscle glycogen synthase by cyclic AMP-dependent protein kinase. Identification of the third site of phosphorylation as serine-7. Eur JBiochem 115: 405–413, 1981

    Article  CAS  Google Scholar 

  12. Parker PJ, Embi N, Caudwell FB, Cohen P: Glycogen synthase from rabbit skeletal muscle. State of phosphorylation of seven phosphoserine residues in vivo in the presence and absence of adrenaline. Eur J Biochem 124: 47–55, 1982

    Article  PubMed  CAS  Google Scholar 

  13. Lawrence JC Jr: Signal transduction and protein phosphorylation in the regulation of cellular metabolism by insulin. Ann Rev Physiol 54: 177–193, 1994

    Article  Google Scholar 

  14. Toth B, Boilen M, Stalmans W: Acute regulation of hepatic protein phosphatases by glucagon, insulin and glucose. J Biol Chem 263: 723–728, 1991

    Google Scholar 

  15. Olivier AR, Ballou LM, Thomas G: Differential regulation of S6 phosphorylation by insulin and EGF in Swiss mouse 3T3 cells. Insulin activation of type 1 Phosphatase. Proc Natl Acad Sci USA 85: 4720–4724, 1988

    Article  PubMed  CAS  Google Scholar 

  16. Olivier AR, Thomas G: Three forms of Phosphatase type-1 in Swiss 3T3 fibroblasts. J Biol Chem 265: 22460–22466, 1990

    PubMed  CAS  Google Scholar 

  17. Srinivasan M, Begum N: Regulation of protein Phosphatase 1 and 2A activities by insulin during myogenesis in rat skeletal muscle cells in culture. J Biol Chem 269: 12514–12520, 1994

    PubMed  CAS  Google Scholar 

  18. Begum N: Stimulation of protein Phosphatase-1 activity by insulin in rat adipocytes. Evaluation of the role of mitogen activated protein kinase pathway. J Biol Chem 270: 709–714, 1995

    PubMed  CAS  Google Scholar 

  19. Hubbard MJ, Cohen P: On target with a new mechanism for the regulation ofprotein Phosphatase. Trends Biochem Sci 18: 172–177, 1993

    Article  PubMed  CAS  Google Scholar 

  20. Begum N: Role of protein serine/threonine Phosphatase 1 and 2A in insulin action. Adv Prot Phos 2: 263–281, 1995

    Google Scholar 

  21. Dent P, Lavoinne A, Nakienly S, Caudwell FB, Watt P, Cohen P: The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348: 302–308, 1990

    Article  PubMed  CAS  Google Scholar 

  22. Lazar DF, Weise RJ, Brady MJ, Mastik CC, Watyers SB, Yamuchi K, Pessin JE, Cuatrecasas P, Saltiel AR: Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem 270: 20801–20807, 1995

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto-Honda R, Tobe K, Kaburagi Y, Ueki K, Asai S, Yachi M, Shirouzu M, Ydoi J, Akanuma Y, Yokoyama S, Yazaki Y, Kadowaki T: Upstream mechanisms of glycogen synthase activation by insulin and insulin-like growth factor-I. J Biol Chem 270: 2729–2734, 1995

    Article  PubMed  CAS  Google Scholar 

  24. Dorrestijn J, Ouwens Dm, Vadenheede JR, Bos JJ, Massen JA: Expression of a dominant negative Ras mutant does not affect stimulation of glucose uptake and glycogen synthesis by insulin. Diabetologia 39: 558–563, 1996

    Article  PubMed  CAS  Google Scholar 

  25. Printon JA, Brady MJ, Saltiel AR: PTG, a protein Phosphatase-1 binding protein with a role in glycogen metabolism. Science 275: 1475–1478, 1997

    Article  Google Scholar 

  26. Ragolia L, Begum N: The effect of modulating the glycogen-associated regulatory subunit of protein Phosphatase-1 on insulin action in rat skeletal muscle cells. Endocrinology 138: 2398–2404, 1997

    Article  PubMed  CAS  Google Scholar 

  27. Woodgett JR: Molecular cloning and expression of glycogen synthase kinase 3/Factor A. EMBO J 9: 2431–2438, 1990

    PubMed  CAS  Google Scholar 

  28. Hughes K, Ramakrishna S, Benjamin WB, Woodgett JR: Identification of multifunctional ATP-citrate lyase kinase as the α isoform of glycogen synthase kinase-3. Biochem J 288: 309–314, 1992

    PubMed  CAS  Google Scholar 

  29. Welsh GI, Proud CG: Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J 294: 625–629, 1993

    PubMed  CAS  Google Scholar 

  30. Cross DAE, Alessi DR, Vadenheede JR, McDowell HE, Hundai HS, Cohen P: The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line is blocked by wortmannin but not by rapamycin.Evidence that wortmannin blocks activation of the mitogen-activated protein kinase in L6 cells between Ras and Raf. Biochem J 303: 21–26, 1994

    PubMed  CAS  Google Scholar 

  31. Sutherland C, Leighton I, Cohen P: Inactivation of glycogen synthase kinase 3b by MAP kinase-activated protein kinase-1 (RSK-2) and p70s6 kinase, new kinase connections in insulin and growth factor signaling Biochem J 296: 15–19, 1993

    PubMed  CAS  Google Scholar 

  32. Sutherland C, Cohen P: The a isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 s6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett 338: 37–42, 1994

    Article  PubMed  CAS  Google Scholar 

  33. Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings B: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789, 1995

    Article  PubMed  CAS  Google Scholar 

  34. Welsh GI, Foulstone EJ, Young SW, Tavare JM, Proud CG: Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase kinase-3 and mitogen activated protein kinase Biochem J 303: 15–20, 1994

    PubMed  CAS  Google Scholar 

  35. Moule SK, Edgell NJ, Welsh GI, Diggle TA, Foulstone EJ, Heesom KJ, Proud CG, Denton RM: Multiple signaling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epidydymal fat cells. Biochem J 311: 595–601, 1995

    PubMed  CAS  Google Scholar 

  36. Cross DAE, Watt PW, Shaw M, Kaay JVD, Downes C P, Holder JC, Cohen P: Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett 406: 211–215, 1997

    Article  PubMed  CAS  Google Scholar 

  37. Hurel SJ, Rochford JJ, Borthwick AC, Wells AM, Vandenheede JR, Turnbull DM, Yeaman SJ: Insulin action in cultured human myoblasts: Contribution of different signalling pathways to regulation of glycogen synthesis. Biochem J 320: 871–877, 1996

    PubMed  CAS  Google Scholar 

  38. Shepard PR, Navé BT, Siddle K: Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: Evidence for the involvement of phosphoinositide 3-kinase and ribosomal protein-s6 kinase. Biochem J 305: 25–28, 1995

    Google Scholar 

  39. Moxham CM, Tabrizchi A, Davis RJ, Malbon C: C-jun N-terminal kinase mediates activation of skeletal muscle glycogen synthase by insulin in vivo. JBiol Chem 271: 30765–30773, 1996

    Article  CAS  Google Scholar 

  40. Azpiazu I, Saltiel AR, Depaol-Roach AA, Lawrence JC Jr: Regulation of both glycogen synthase and PHAS-1 by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and rapamycinsensitive pathways. J Biol Chem 271: 5033–5039, 1996

    Article  PubMed  CAS  Google Scholar 

  41. Dudley P, Pang L, Decker S, Bridges A, Saltiel A: A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92: 7686–7689, 1995

    Article  PubMed  CAS  Google Scholar 

  42. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA: Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA 88: 4171–4175, 1991

    Article  PubMed  CAS  Google Scholar 

  43. Coffer PJ, Woodgett JR: Molecular cloning and characterization of a novel putative protein-serine kinase related to cAMP-Jependent and protein kinase C families. Eur J Biochem 201: 475–481, 1991

    Article  PubMed  CAS  Google Scholar 

  44. Bellacosa A, Testa JR, Staal SP, Tsichlis PN: A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254: 274–277, 1991

    Article  PubMed  CAS  Google Scholar 

  45. Cohen GB, Ren R, Baltimore D: Modular binding domains in signal transduction proteins. Cell 80: 237–248, 1995

    Article  PubMed  CAS  Google Scholar 

  46. Alessi DR, Andjelkovic M, Caudwell B, Corn P, Morrice N, Cohen P, Hemming BA: Mechanism of activation of protein kinase B by insulin and IGF-I. EMBO J 15: 6541–6551, 1996

    PubMed  CAS  Google Scholar 

  47. Jones PF, Jakubowicz T, Hemming BA: Molecular cloning of a second formofprotein kinase.Cell Reg 2: 1001–1004, 1991

    CAS  Google Scholar 

  48. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR: Akt 2, a putative oncogene encoding a member of a subfamily of protein serine-threonine kinase, is amplified in human ovarian carcinoma. Proc Natl Acad Sci USA 89: 9267–9271, 1992

    Article  PubMed  CAS  Google Scholar 

  49. Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, Haga T, Kikkawa U: Molecular cloning and characterization of a new member of the RAC protein-kinase family-association of the pleckstrin homology domain of 3 types of RAC protein kinase with protein kinase C subspecies and beta-gamma subunits of G-proteins. Biochem Biophys Res Commun 216: 526–534, 1995

    Article  PubMed  CAS  Google Scholar 

  50. Moule SK, Welsh GI, Edgell NJ, Foulstone EJ, Proud CG, Denton RM: Regulation of protein kinase β and glycogen synthase kinase-3 by insulin and B-adrenergic agonists in rat epididymal fat cells. J Biol Chem 272: 7713–7719, 1997

    Article  PubMed  CAS  Google Scholar 

  51. Vanhaesebroek B, Leevere SJ, Panayotou G, Waterfield MD: Phosphoinositide 3-kinase: A conserved family of signal transducer. Trends Biochem Sci 22: 123–128, 1997

    Google Scholar 

  52. Toker A, Cantley LC: Signaling through the lipid products of phosphoinositide 3-OH kinase. Nature 387: 673–676, 1997

    Article  PubMed  CAS  Google Scholar 

  53. Ruderman N, Kapeller R, White MF, Cantley LC: Activation of phosphoinositol 3-kinase by insulin. Proc Natl Acad Sci USA 87: 1411–1415, 1990

    Article  PubMed  CAS  Google Scholar 

  54. Cheatham B, Kahn CR: Insulin action and insulin signaling network. Endocr Rev 16: 117–142, 1995

    PubMed  CAS  Google Scholar 

  55. Franke TF, Kaplan DR, Cantley LC, Toker AA: Direct regulation of Akt protooncogene product by PI3, 4P. Science 275: 665–668, 1997

    Article  PubMed  CAS  Google Scholar 

  56. Klippel A, Kavanaugh WM, Pot D, Williams LT: A specific product of PI3-k directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17: 338–344, 1997

    PubMed  CAS  Google Scholar 

  57. Frech M, Andjelkovic M, Ingley E, Reddy KK, Falck JR, Hemming BA: High affinity binding of inositol phosphate and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem 272: 8474–8481, 1997

    Article  PubMed  CAS  Google Scholar 

  58. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Rees CB, Cohen P: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates PKB-α. Curr Biol 7: 261–269, 1997

    Article  PubMed  CAS  Google Scholar 

  59. Wymann MP, Bulgarelli-leva G, Zvelebil MJ, Pirola L, Vanhaesebroek B, Waterfield MD, Panayotou G: Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-803, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16: 1722–1733, 1996

    PubMed  CAS  Google Scholar 

  60. Standaert ML, Bandyopadhyay G, Farese RV: Studies with wortmannin suggest a role for phosphatidylinositol 3-kinase in the activation of glycogen synthase and mitogen-activated protein kinase by insulin in rat adipocytes: Comparison of insulin and protein kinase C modulators Biochem Biophys Res Commun 209: 1082–1088, 1995

    Article  PubMed  CAS  Google Scholar 

  61. Sakaue H, Hara K, Noguchi T, Matozaki T, Kotani K, Ogawa W, Ynezawa K, Waterfield MD, Kasuga M: Ras-independent and wortmannin-sensitive activation of glycogen synthase by insulin in Chinese hamster ovary cells. J Biol Chem 270: 11304–11309, 1995

    Article  PubMed  CAS  Google Scholar 

  62. Vlahos CJ, Matter WF, Hui KY, Brown RF: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-l benzopyran-4-one (LY294002). J Biol Chem 269: 5241–5248, 1994

    PubMed  CAS  Google Scholar 

  63. Pandey SK, Anand-Srivastava MB, Srivastava AK: Implication of phosphatidylinositol 3-kinase (PI3-k) in vanadyl sulfate(VS)-stimulated glycogen synthesis. Canadian J Diab Care 21: p 39, 1997

    Google Scholar 

  64. Frevert EU, Kahn BB: Differential effect of constitutively active PI3-k on glucose transport, glycogen synthase activity and DNA synthesis in 3T3-L1 adipocytes. Mol Cell Biol 17: 190–198, 1997

    PubMed  CAS  Google Scholar 

  65. Inuki K, Funaki M, Ohigara T, Katagiri H, Kanda A, Anai M, Fukushima Y, Hosaka T, Suzuki M, Shin B, Takata K, Yazaki Y, Kikuchi M, Oka Y, Asano T: p85 a gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase(PI3-kinase), p50α, p55α, and p85α with different PI3-kinase activity elevating responses to insulin. J Biol Chem 272: 7873–7882, 1997

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Srivastava, A.K., Pandey, S.K. (1998). Potential mechanism (S) involved in the regulation of glycogen synthesis by insulin. In: Srivastava, A.K., Posner, B.I. (eds) Insulin Action. Developments in Molecular and Cellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5647-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5647-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7584-5

  • Online ISBN: 978-1-4615-5647-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics