Skip to main content

Part of the book series: The Handbooks of Fuzzy Sets Series ((FSHS,volume 1))

Abstract

The chapter presents an overview of methods for solving fuzzy linear programming (FLP) problems. It starts with the simplest case of linear programming models with soft constraints, called flexible programming. Then, it goes through most essential questions connected with FLP problems: modeling of fuzzy data, extended addition for aggregating fuzzy objectives and left-hand sides of fuzzy constraints, inequality relations between fuzzy left-hand sides and fuzzy right-hand sides of the constraints, treatment of fuzzy objectives and computation of a comprise solution in the multi-objective case. Finally, a survey of applications of FLP and of related bibliography is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellman R. E. and Zadeh L. A. (1973). Decision-making in a fuzzy environment, Management Sciences, 17, 149–156.

    MathSciNet  Google Scholar 

  • Baptistella L. F. B. and Ollero A. (1980). Fuzzy methodologies for interactive multicriteria optimization, IEEE Transactions on Systems, Man, and Cybernetics, 10, 355–365.

    Article  MathSciNet  MATH  Google Scholar 

  • Bit A. K. et al. (1993). Fuzzy programming approach to multiobjective solid transportation problem, Fuzzy Sets and Systems, 57, 183–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Bortolan G. and Degani R. (1985). Ranking fuzzy subsets, Fuzzy Sets and Systems, 15, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Buckley J. J. (1988). Possibilistic linear programming with triangular fuzzy numbers, Fuzzy Sets and Systems, 26, 135–138.

    Article  MathSciNet  Google Scholar 

  • Buckley J. J. (1989). Solving possibilistic linear programming problems, Fuzzy Sets and Systems, 31, 329–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Buckley J. J. (1995). Joint solution to fuzzy programming problems, Fuzzy Sets and Systems, 72, 215–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Carlsson C. and Korhonen P. (1986). A parametric approach to fuzzy linear programming, Fuzzy Sets and Systems, 20, 17–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Chanas S. (1983). The use of parametric programming in FLP, Fuzzy Sets and Systems, 11, 243–251.

    Article  MATH  Google Scholar 

  • Chanas S. (1987). Fuzzy optimization in networks, in Kacprzyk J., Orlowski S.A. (Eds.), Optimization models using fuzzy sets and possibility theory, Reidel, Dordrecht, 303–327.

    Google Scholar 

  • Chanas S. (1989). Fuzzy programming in multiobjective linear programming — a parametric approach, Fuzzy Sets and Systems, 29, 303–313.

    Article  MathSciNet  MATH  Google Scholar 

  • Chanas S. and Kuchta D. (1994). Linear programming problems with fuzzy coefficients in the objective function. in: Delgado M., Kacprzyk J. and Verdegay J.-L. and Vila M. A., Fuzzy optimization, Physica-Verlag, Heidelberg, 148–157.

    Google Scholar 

  • Chakraborty T. K. (1994). A class of single sampling inspection plans based on possiblistic programming problem, Fuzzy Sets and Systems, 63, 35–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Campos L. and Verdegay J. L. (1989). Linear programming problems and ranking of fuzzy numbers, Fuzzy Sets and Systems, 32, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Czyzak P. (1990). Application of the ‘FLIP’ method to farm structure optimization under uncertainty, in: Slowinski R. and Teghem J. (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht, 263–278.

    Chapter  Google Scholar 

  • Czyzak P. and Slowinski R. (1990). Solving multiobjective diet optimization problems under uncertainty, in: Korhonen P., Lewandowski A. and Wallenius J. (Eds.), Multiple criteria decision support, ser. LNEMS, vol. 356, Springer Verlag, Berlin, 272–281.

    Google Scholar 

  • Czyzak P. and Slowinski R. (1991). ‘FLIP’-Multiobjective fuzzy linear programming software with graphical facilities, in: Fedrizzi M., Kacprzyk J. and Roubens M. (Eds.), Interactive fuzzy optimization, ser. LNEMS, vol. 368, Springer Verlag, Berlin, 168–187.

    Chapter  Google Scholar 

  • Darzentas J. (1987). On fuzzy location models, in: Kacprzyk J. and Orlovski S. A. (Eds.), Optimization models using fuzzy sets and possibility theory, Reidel, Dordrecht, 328–341.

    Google Scholar 

  • Delgado M., Kacprzyk J., Verdegay J.-L., Vila M. A. (Eds.) (1994). Fuzzy optimization, Physica-Verlag, Heidelberg.

    MATH  Google Scholar 

  • Delgado M., Verdegay J. L. and Vila M. A. (1989). A general model for fuzzy linear programming, Fuzzy Sets and Systems, 29, 21–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado M., Verdegay J. L. and Vila M. A. (1994). Fuzzy linear programming: From classical methods to new applications, in: Delgado M., Kacprzyk J., Verdegay J.-L. and Vila M. A. (Eds.), Fuzzy optimization, Physica-Verlag, Heidelberg, 111–134.

    Google Scholar 

  • Diedrich G., Messick S. J. and Tucker L. R. (1957). General least squares solution for successive intervals, Psychometrika 22, 159–173.

    Article  MathSciNet  Google Scholar 

  • Dubois D. and Prade H. (1980). Fuzzy sets and systems. Theory and applications, Academic Press, New York.

    MATH  Google Scholar 

  • Dubois D. and Prade H. (1989). Ranking of fuzzy numbers in the setting of possibility theory, Information Sciences, 30, 183–224.

    Article  MathSciNet  Google Scholar 

  • Esogbue A. O. and Guo K. (1991). Optimization of nonpoint source water pollution control planning using fuzzy mathematical programming, Computer Management & Systems Science, 67–70

    Google Scholar 

  • Fortemps Ph., Roubens M. (1996). Ranking and defuzification methods based on area compensation, Fuzzy Sets and Systems, 82, 319–330.

    Article  MathSciNet  MATH  Google Scholar 

  • Fortemps Ph., Teghem J. (1997). Multi-objective fuzzy linear programming: the MOFAC method, Cahier du LAMSADE, Université de Paris Dauphine, Paris (to appear).

    Google Scholar 

  • Fedrizii M., Kacprzyk J., Roubens M. (Eds.) (1991). Interactive fuzzy optimization, Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Hannan E. L. (1981). Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems, 6, 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Inuiguchi M., Ichihashi M. and Kume Y. (1990). A solution algorithm for fuzzy linear programming with piecewise linear membership functions, Fuzzy Sets and Systems, 34, 15–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Kacprzyk J. (1979). A branch and bound algorithm for the multistage control of a fuzzy system in a fuzzy environment, Kybernetes, 8, 139–147.

    Article  MATH  Google Scholar 

  • Kacprzyk J. (1983). Multistage decision-making under fuzziness, TÜV Rheinland, Köln.

    MATH  Google Scholar 

  • Kacprzyk J. and Orlovski S. A. (Eds.) ( 1987). Optimization models using fuzzy sets and possibility theory, Reidel, Dordrecht.

    MATH  Google Scholar 

  • Kivijärvi H., Korhonen P. and Wallenius J. (1986). Operations research and its practice in Finland, Interfaces, 16, 53–59.

    Article  Google Scholar 

  • Kolodziejczyk W. (1986). Orlovsky’s concept of decision-making with fuzzy preference relation — further results, Fuzzy Sets and; Systems, 19, 11–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Kovacs M. (1994). Fuzzy linear programming with centered fuzzy numbers, in: Delgado M., Kacprzyk J., Verdegay J.-L. and Vila M. A. (Eds.), Fuzzy optimization, Physica-Verlag, Heidelberg, 135–147.

    Google Scholar 

  • Lai Y.-J. and Hwang C.-L. (1992). Fuzzy mathematical programming. Methods and applications, Springer Verlag, Heidelberg.

    Book  MATH  Google Scholar 

  • Lai Y.-J. and Hwang C.-L. (1993). A new approach to some possibilistic linear programming problems, Fuzzy Sets and Systems, 49.

    Google Scholar 

  • Lai Y.-J. and Hwang C.-L. (1994). Fuzzy multiple objective decision making. Methods and applications, Springer Verlag, Heidelberg.

    Book  MATH  Google Scholar 

  • Leberling H. (1981). On finding compromise solutions in multicriteria problems using the fuzzy min-operator, Fuzzy Sets and Systems, 6, 105–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Leung Y. (1988). Interregional equlibrium and fuzzy linear programming, Environment and Planning, A 20, 25–40 and 219-230.

    Article  Google Scholar 

  • Lilien G. (1987). MS/OR. A mid-life crises, Interfaces, 17, 53–59.

    Article  Google Scholar 

  • Luhandjula M. K. (1987). Multiple objective programming with possibilistic coefficients, Fuzzy Sets and Systems, 21, 135–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer zu Seihausen H. (1989). Repositioning OR’s products in the market, Interfaces, 19, 79–87.

    Article  Google Scholar 

  • Mjelde K. M. (1986). Fuzzy resource allocation, Fuzzy Sets and Systems, 19, 239–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Nakamura K. (1984). Some extensions of fuzzy linear programming, Fuzzy Sets and Systems, 14, 211–219.

    Article  MathSciNet  MATH  Google Scholar 

  • Negoita C. V., Minoiu S. and Stan E. (1976). On considering imprecision in dynamic linear programming, Economic Computation and Economic Cybernetics Studies and Research, 3, 83–95.

    MathSciNet  Google Scholar 

  • Negoita C. V. and Ralescu, D. (1987). Simulation, knowledge-based computing and fuzzy statistics, Van Nostrand Reinhold, New York.

    MATH  Google Scholar 

  • Negoita C. V. and Sularia M. (1976). On fuzzy mathematical programming and tolerances in planning, Economic Computation and Economic Cybernetics Studies and Research, 3, 3–15.

    MathSciNet  Google Scholar 

  • Orlovski S. A. (1984). Multiobjective programming problems with fuzzy parameters, Control and Cybernetics, 4, 175–184.

    MathSciNet  Google Scholar 

  • Orlovski S. A. (1985). Mathematical programming problems with fuzzy parameters, in: Kacprzyk J. and Yager R. R. (Eds.), Management decision support systems using fuzzy sets and possibility theory, TÜV Rheinland, Köln, 1985, 136-145.

    Google Scholar 

  • Ostermark R. (1988). Profit apportionment in concerns with mutual ownership — an application of fuzzy inequalities, Fuzzy Sets and Systems, 26, 283–297.

    Article  Google Scholar 

  • Ostermark R. (1989). Fuzzy linear constraints in the capital asset pricing model, Fuzzy Sets and Systems, 30, 93–102.

    Article  MathSciNet  Google Scholar 

  • Owsinski J. W., Zadrozny S. and Kacprzyk J. (1987). Analysis of water use and needs in agriculture through a fuzzy programming model, in: Kacprzyk J. and Orlovski S. A. (Eds.), Optimization models using fuzzy sets and possibility theory, Reidel, Dordrecht, 377–395.

    Google Scholar 

  • Perincherry V., Kikuchi S. (1990). A fuzzy approach to the transshipment problem, Uncertainty Modeling and Analysis, 330–335.

    Google Scholar 

  • Pickens J. B., Hof J. G. (1991). Fuzzy goal programming in forestry: an application with special solution problems, FuzyySets and Systems, 39, 239–246.

    Google Scholar 

  • Ramik J. (1987). A unified approach to fuzzy optimization, Reprints of the Second IFSA Congress in Tokyo, Vol. 1, 128–130.

    Google Scholar 

  • Ramik J. and Rimanek J. (1985). Inequality between fuzzy numbers and its use in fuzzy optimization, Fuzzy Sets and Systems, 16, 123–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramik J. and Rimanek J. (1987). Fuzzy parameters in optimal allocation of resources, in: Kacprzyk J. and Orlovski S. A. (Eds.), Optimization models using fuzzy sets and possibility theory, Reidel, Dordrecht, 1987, 359–374.

    Google Scholar 

  • Ramik J. and Rommelfanger H. (1993). A single-and a multi-valued order on fuzzy numbers and its use in linear programming with fuzzy coefficients, Fuzzy Sets and Systems, 57, 203–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramik J. and Rommelfanger H. (1996). Fuzzy mathematical programming based on some new inequality relations, Fuzzy Sets and Systems, 81, 77–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Rommelfanger H. (1984). Concave membership functions and their application in fuzzy mathematical programming, in: Proceedings of the Workshop on the Membership Function, Ed. by EIASM Brussels, 1984, 88–101.

    Google Scholar 

  • Rommelfanger H. (1989). Inequality relations in fuzzy constraints and its use in linear fuzzy optimization, in: Verdegay J. L. and Delgado M. (Eds.), The interface between artificial intelligence and operational research in fuzzy environment, Verlag TÜV Rheinland, Köln, 195–211.

    Google Scholar 

  • Rommelfanger H. (1990). FULPAL — An interactive method for solving multiobjective fuzzy linear programming problems, in: Slowinski R. and Teghem J. (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht, 279–299.

    Chapter  Google Scholar 

  • Rommelfanger H. (1991). FULP — A PC-supported procedure for solving multicriteria linear programming problems with fuzzy data, in: Fedrizzi M., Kacprzyk J. and Rubens M. (Eds.), Interactive fuzzy optimization, Springer Verlag, Berlin, Heidelberg, 154–167.

    Chapter  Google Scholar 

  • Rommelfanger H. (1994a). Fuzzy decision support systems, Springer Verlag, Berlin, Heidelberg.

    Book  Google Scholar 

  • Rommelfanger H. (1994b). Some problems of fuzzy optimization with t-norm based addition, in: Delgado M., Kacprzyk J., Verdegay J.-L. and Vila M. A. (Eds.), Fuzzy optimization.. Physica-Verlag, Heidelberg, 158–168.

    Google Scholar 

  • Rommelfanger H. (1995a) Reduction costs as a vital argument in favour of fuzzy models. In: BUSEFAL, 51, 30–38.

    Google Scholar 

  • Rommelfanger H. (1995b). FULPAL 2.0 — An interactive algorithm for solving multicriteria fuzzy linear programs controlled by aspiration levels, in: Schweigert D. (Ed.), Methods of multicriteria decision theory, Pfalzakademie, Lamprecht, 21–34.

    Google Scholar 

  • Rommelfanger H. (1996). Fuzzy linear programming and applications. European Journal of Operational Research, 92, 512–527.

    Article  MATH  Google Scholar 

  • Rommelfanger H., Hanuscheck R. and Wolf J. (1989). Linear programming with fuzzy objectives, Fuzzy Sets and Systems, 29, 31–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Rommelfanger H. and Keresztfalvi T. (1991). Multicriteria fuzzy optimization based on Yager’s parametrized t-norm, Foundations of Computing and Decision Sciences, 16, 99–110.

    MathSciNet  MATH  Google Scholar 

  • Roubens M. (1990). Inequality constraints between fuzzy numbers and their use in mathematical programming, in: Slowinski R., Teghem J. (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht, 321–330.

    Chapter  Google Scholar 

  • Roubens M. and Teghem J. (1988). Comparison of methodologies for multicriteria feasibility constraint fuzzy and multiobjective stochastic linear programming, in: Kacprzyk J. and Fedrizzi M. (Eds.), Combining fuzzy imprecision with probabilistic uncertainty in decision making, Springer Verlag, Berlin, Heidelberg, 240–265.

    Chapter  Google Scholar 

  • Rubin P. A. and Narasimhan R. (1984). Fuzzy goal programming with nested priorities, Fuzzy Sets and Systems, 42, 115–129.

    Article  MathSciNet  Google Scholar 

  • Sakawa M. (1983). Interactive computer programs for fuzzy linear programming with multiple objectives, Int. J. Man-Machine Studies, 18, 489–503.

    Article  MATH  Google Scholar 

  • Sakawa M. (1993). Fuzzy sets and interactive multiobjective optimization, Plenum Press, New York.

    MATH  Google Scholar 

  • Sakawa M. and Yano H. (1985) Interactive decision making for multiobjective linear fractional programming problems with fuzzy parameters. Cybernetics and Systems, 16, 377–394.

    Article  MathSciNet  MATH  Google Scholar 

  • Sakawa M. and Yano H. (1989). Interactive fuzzy satisficing method for multiobjective nonlinear programming problems with fuzzy parameters, Fuzzy Sets and Systems, 30, 221–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Sakawa M. and Yano H. (1990). Interactive decision making for multiobjective programming problems with fuzzy parameters, in: Slowinski R. and Teghem J. (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht, 191–228.

    Chapter  Google Scholar 

  • Seo F. and Sakawa M. (1988). Multiple criteria decision analysis in regional planning, Reidel Publishing Company, Dordrecht.

    MATH  Google Scholar 

  • Slowinski R. (1986). A multicriteria fuzzy linear programming method for water supply system development planning, Fuzzy Sets and Systems, 19, 217–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Slowinski R. (1987). An interactive method for multiobjective linear programming method with fuzzy parameters and its application to water supply planning, in: Kacprzyk J. and Orlovski S. A. (Eds.), Optimization models using fuzzy sets and possibility theory, Reidel, Dordrecht, 396–414.

    Google Scholar 

  • Slowinski R. (1990). ‘FLIP’: an interactive method for multiobjective linear programming with fuzzy coefficients, in: Slowinski R. and Teghem J. (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht, 249–262.

    Chapter  Google Scholar 

  • Slowinski R. (1997). Interactive fuzzy multiobjective programming, in: Climaco J. (Ed.), Multicriteria analysis, Springer-Verlag, Berlin, 202–212.

    Chapter  Google Scholar 

  • Slowinski R., Teghem J. (1988). Fuzzy versus stochastic approaches to multicriteria linear programming under uncertainty, Naval Research Logistics, 35, 673–695.

    Article  MathSciNet  MATH  Google Scholar 

  • Slowinski R. and Teghem J. (1990). A comparison study of’ sTRANGE’ and ‘FLIP’, in: Slowinski R. and Teghem J. (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht, 365–393.

    Chapter  Google Scholar 

  • Slowinski R., Teghem J. (Eds.) (1990). Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  • Sommer G. and Pollatschek, M. A. (1978). A fuzzy programming approach to an air pollution regulation problem, in: Trappl R., Klir G. J. and Pichler F. R. (Eds.), Progress in cybernetics and systems research. General System Methodology, Mathematical System Theory, and Fuzzy Systems, Biocybernetics and Theoretical Neurobiology, Vol III, Hemisphere Washington, 303–313.

    Google Scholar 

  • Tanaka H. and Asai K. (1984). Fuzzy linear programming with fuzzy numbers, Fuzzy Sets and Systems, 13, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka H., Ichihashi H. and Asai K. (1984). A formulation of linear programming problems based on comparison of fuzzy numbers, Control and Cybernetics, 13, 185–194.

    MathSciNet  MATH  Google Scholar 

  • Tanaka H., Okuda T., Asai K. (1974). On fuzzy-mathematical programming, Journal of Cybernetics, 3, 4, 37–46.

    Article  MathSciNet  Google Scholar 

  • Thole U., Zimmermann H.-J. and Zysno P. (1979). On the suitability of minimum and product operators for the intersection of fuzzy sets, Fuzzy Sets and Systems, 2, 173–186.

    Article  Google Scholar 

  • Tingley G. A (1987). Can MS/OR sell itself well enough?, Interfaces, 17, 41–52.

    Article  MathSciNet  Google Scholar 

  • Trappey J. F. C., Liu C. R. and Chang T. C. (1988). Fuzzy non-linear programming. Theory and application in manufacturing, International Journal of Production Research, 26, 957–985.

    Article  Google Scholar 

  • Verdegay J. L. (1982). Fuzzy mathematical programming, in: Gupta M. M. and Sanchez E. (Eds.), Approximate reasoning in decision analysis, North/Holland, Amsterdam, 231/236.

    Google Scholar 

  • Verdegay J. L. (1984). Application of fuzzy optimization in operational research, Control and Cybernetics, 13, 229–239.

    MathSciNet  MATH  Google Scholar 

  • Wagenknecht M. and Hartmann K. (1987). Fuzzy evaluation of pareto points and its application to hydrocracking processes, in: Kacprzyk J. and Orlovski S. A. (Eds.), Optimization models using fuzzy sets and possibility theory, Reidel, Dordrecht, 415–431.

    Google Scholar 

  • Werners B. (1987). Interactive fuzzy programming system, Fuzzy Sets and Systems, 23, 131–147.

    Article  MathSciNet  MATH  Google Scholar 

  • Yager R. R. (1979). Mathematical programming with fuzzy constraints and a preference on the objective, Kybernetes, 9, 109–114.

    Article  Google Scholar 

  • Yazenin A.V. (1987). Fuzzy and stochastic programming, Fuzzy Sets and Systems, 22, 171–180.

    Article  MathSciNet  MATH  Google Scholar 

  • Zeleny M. (1986). Optimal system design with multiple criteria. De Novo Programming Approach, Engineering Cost and Production Economics, 10, 89–94.

    Google Scholar 

  • Zimmermann H.-J. (1976). Description and optimization of fuzzy systems, Internationaljournal of General Systems, 2, 209–216.

    Article  MATH  Google Scholar 

  • Zimmermann H.-J. (1978). Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1, 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann H.-J. (1993). Application of fuzzy set theory to mathematical programming, in: Dubois D., Prade H. and Yager R. R. (Eds.), Readings in fuzzy sets for intelligent systems, Morgan Kaufmann Publishers, Inc, 795–809.

    Google Scholar 

  • Zimmermann H.-J. (1996). Fuzzy sets, decision making and expert systems, Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Zimmermann H.-J. and Zysno P. (1979). Latent connectives in human decision making, Fuzzy Sets and Systems, 3, 37–51.

    Google Scholar 

  • Zimmermann H.-J. (1997). media selection and other applications of fuzzy linear programming, in: Dubois D., Prade H., Yager R. (Eds.), Fuzzy information engineering. A guided tour of applications. J. Wiley, New York, 595–617.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rommelfanger, H., Słowiński, R. (1998). Fuzzy Linear Programming with Single or Multiple Objective Functions. In: Słowiński, R. (eds) Fuzzy Sets in Decision Analysis, Operations Research and Statistics. The Handbooks of Fuzzy Sets Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5645-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5645-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7583-8

  • Online ISBN: 978-1-4615-5645-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics