Skip to main content

Electrical Device Modeling

  • Chapter
  • 345 Accesses

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 5))

Abstract

The simulation of the electrical and optical behavior of semiconductor devices has been established as an essential tool for both the improvement of existing devices and for the development of new ones. There is no doubt that the role of device modeling will increase in the future. Device modeling involves the numerical solution of a set of equations, which form a mathematical model for device operation, together with models that describe the material properties. A number of sophisticated device program packages are already commercially available on the market such as Medici, 1997 from TMA company or Atlas from SILVACO company. These programs are mostly designed for modeling a broad range of crystalline semiconductor devices. At present they are continuously updated to offer possibilities to model also polysilicon and amorphous silicon based devices such as thin film transistors (TFTs) and solar cells. The advantage of these programs is that they are modular, so the users need to acquire only the minimum set of modules to meet their needs. A comprehensive set of two dimensional (2-D) device simulation tools and common libraries such as parser, grid generation algorithms, solvers and external interfaces are integrated in these programs. Still, the models that are used in these packages to describe material properties of amorphous silicon are relatively simple. Therefore, several groups have developed their own computer programs for modeling amorphous and microcrystalline silicon solar cells, in which more flexible and sophisticated models describing amorphous silicon electronic properties are implemented. Examples are: the model of Hack and Shur, 1985, the program AMPS developed at PennState University (McElheny et al., 1988), the ASPIN program from Ljubljana University (Smole and Furlan, 1992), and the ASA package developed at Delft University of Technology (Zeman et al., 1997).

Nature has that many parameters… —Stephen Fonash, April 15, 1998

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Block, M., Modellierung von Dünnschichtsolarzellen aus amorphem Silizium, Ph.D. thesis, Fachbereich Physik der Phillips-Universität Marburg, 1993.

    Google Scholar 

  • Bruns, J., Die Entwicklung eines numerischen Simulationmodells für a-Si:H Solarzellen und seine Anwendung zur Analyse experimentell ermittelter Spektralcharakteristiken, Ph.D. thesis, Fachbereich Elektrotechnik der Technischen Universität Berlin, 1993.

    Google Scholar 

  • Chen, I., and S. Lee, On the current-voltage characteristics of amorphous hydrogenated silicon Schottky diodes, J. Appl. Phys. 53 (1982) 1045–1051.

    Article  CAS  Google Scholar 

  • Cohen, M.H., H. Fritsche, and S.R. Ovshinsky, Simple band model for amorphous semiconducting alloys, Phys. Rev. Lett., 22 (1969) 1065–1068.

    Article  CAS  Google Scholar 

  • Crandall, R.S., Modelling of thin film solar cells: Uniform field approximation, J. Appl. Phys. 54 (1983) 7176–7186.

    Article  CAS  Google Scholar 

  • Fantoni, A., M. Vieira, J. Cruz, R. Schwarz and R. Martins, A two-dimensional numerical simulation of a non-uniformly illuminated amorphous silicon solar cell, J. Physics D: Appl. Phys. 29 (1996) 3154–3159.

    Article  CAS  Google Scholar 

  • Fonash, S., and H. Zhu, Computer simulation for solar cell applications: Understanding and design, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998), in print.

    Google Scholar 

  • Gummel, H.K., A self-consistent iterative scheme for one-dimensional steady state transistor calculations, IEEE Trans. ED, ED-11 (1964) 455–465.

    Article  Google Scholar 

  • Hack, M. and M. Shur, Physics of amorphous silicon alloy p-i-n solar cells, J. Appl. Phys. 58 (1985) 997–1020.

    Article  CAS  Google Scholar 

  • Hall, R.N., Germanium rectifier characteristics, Phys. Rev. 83 (1951) 228.

    CAS  Google Scholar 

  • Hall, R.N., Electron-hole recombination in germanium, Phys. Rev. 87 (1952) 387.

    Article  CAS  Google Scholar 

  • Halpern, V., The statistics of recombination via dangling bonds in amorphous silicon, Phil. Mag. 54 (1986) 473–482.

    Article  CAS  Google Scholar 

  • Hou, J.Y., J.K. Arch, S.J. Fonash, S. Wiedeman, and M. Bennet, An examination of the “tunneljunctions” in triple junction a-Si:H based solar cells: Modeling and effects on performance, Proc. 22nd IEEE PV Specialists Conference, Las Vegas (1991) 1260–1264.

    Google Scholar 

  • Hurkx, G.A.M., D.B.M. Klaassen and M.P.G. Knuvers, A new recombination model for device simulation including tunneling, IEEE Trans. ED 39 (1992) 331–338.

    Article  Google Scholar 

  • Ikegaki, T., H. Itoh, S. Muramatsu, S. Matsubara, N. Nakamura, T. Shimada, J. Umeda, and M. Migitaka, Numerical analysis of amorphous silicon solar cells: A detailed investigation of the effects of internal field distribution on cell characteristics, J. Appl. Phys. 58 (1985) 2352–2359.

    Article  CAS  Google Scholar 

  • Kroon, M.A., R.A.C.M.M. van Swaaij, M. Zeman, V.I. Kuznetsov, and J.W. Metselaar, Hydrogenated amorphous silicon transverse junction solar cell, Appl. Phys. Lett. 72 (1998) 209.

    Article  CAS  Google Scholar 

  • Kurata, M., Numerical analysis for semiconductor devices, (Lexington Books, Lexington, MA, 1982).

    Google Scholar 

  • McElheny, P.J., J. Arch, H. Liu and S.J. Fonash, Range of validity of the surface-photovoltage diffusion length measurement: A computer simulation, J. Appl.Phys. 64(3), 1254–1265 (1988).

    Article  Google Scholar 

  • MEDICI, Two-Dimensional Device Simulation Program, Version 4.0, TMA, Sunnyvale, CA, 1997.

    Google Scholar 

  • Mott, N.F., and E.A. Davis, Electronic processes in non-crystalline materials, 2nd Edition (The International Series of Monographs on Physics, ed. W. Marshall and D.H. Wilkinson, Clarendon Press, Oxford, 1979).

    Google Scholar 

  • Okamoto, H., H. Kida, S. Nonomura and Y. Hamakawa, Variable minority carrier transport model for amorphous silicon solar cells, Solar Cells 8 (1983) 317–336.

    Article  CAS  Google Scholar 

  • Okamoto, H., H. Kida and Y. Hamakawa, Steady-state photoconductivity in amorphous semiconductors containing correlated defects, Phil. Mag. 49 (1984) 231–247.

    Article  CAS  Google Scholar 

  • Overhof, H., and P. Thomas, Hydrogenated amorphous silicon (Springer-Verlag, 1989).

    Google Scholar 

  • Pierret, R.F., in: Advanced Semiconductor Fundamentals (Addison-Wesley Publishing Co., Reading, Massachusetts, 1987).

    Google Scholar 

  • Powell M.J., and S.C. Deane, Improved defect-pool model for charged defects in amorphous silicon, Phys. Rev. B 48 (1993) 10815–10827.

    Article  CAS  Google Scholar 

  • Rhoderick, E.H., Metal-Semiconductor Contacts, Monographs in Electrical and Electronic Engineering, Eds. P. Hammond and D. Walsh (Clarendon Press, Oxford, 1980).

    Google Scholar 

  • Sah, C.T., and W. Shockley, Electron-Hole recombination statistics in semiconductors through flaws with many charge conditions, Phys. Rev. 109 (1958) 1103–1115.

    Article  CAS  Google Scholar 

  • Sawada, T., H. Tarui, N. Terada, M. Tanaka, T. Takahama, S. Tsuda and S. Nakano, Theoretical analysis of textured thin-film solar cells and a guideline to achieving higher efficiency, Proc. 23rd IEEE PV Specialists Conference, Louisville, KY, May (1993).

    Google Scholar 

  • Schumm, G., Chemical equilibrium description of stable and metastable defect structures in a-Si:H, Phys. Rev. B 49 (1994) 2427–2442.

    Article  CAS  Google Scholar 

  • Selberherr, S., Analysis and Simulation of Semiconductor Devices, (Springer-Verlag, Wien, 1984).

    Book  Google Scholar 

  • Sichanugrist, P., M. Konagai, and K. Takahashi, Theoretical analysis of amorphous silicon solar cells: Effects of interface recombination, J. Appl. Phys. 55 (1984) 1155–1161.

    Article  CAS  Google Scholar 

  • Simmons J.G., and G.W. Taylor, Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps, Phys. Rev. B 4 (1971) 502–511.

    Article  Google Scholar 

  • Shockley W., and W.T. Read, Statistics of the recombinations of holes and electrons, Phys. Rev. 87 (1952) 835–842.

    Article  CAS  Google Scholar 

  • Smole, F., and J. Furlan, Effects of abrupt and graded a-Si:C:H/a-Si:H interface on internal properties and external characteristics of p-i-n solar cells, J. Appl. Phys. 72 (1992) 5964–5969.

    Article  CAS  Google Scholar 

  • Smole, F., M. Topic, J. Furlan, Amorphous silicon solar cell computer model incorporating the effects of TCO/a-Si:C:H junction, Solar Energy Materials and Solar Cells 34 (1994) 385–392.

    Article  CAS  Google Scholar 

  • Stiebig, H., A. Kreisel, K. Winz, N. Schultz, C. Beneking, Th. Eickhoff and H. Wagner, Spectral response modelling of a-Si:H solar cells using accurate light absorption profiles, 1st World Conference on Photovoltaic Energy Conversion, (Proc. 24th IEEE PV Specialists Conference, Waikoloa, HI, USA, December 1994) 603–606.

    Google Scholar 

  • Street R.A., Hydrogenated amorphous silicon, Cambridge Solid State Science Series, Eds. R.W. Cahn, E.A. Davis and I.M. Ward (Cambridge University Press, 1991).

    Google Scholar 

  • Stutzmann, M., Phil. Mag. B 56 (1987) 63.

    Article  CAS  Google Scholar 

  • Stutzmann, M., A comment on thermal defect creation in hydrogenated amorphous silicon, Phil. Mag. Lett. 66 (1992) 147–150.

    Article  CAS  Google Scholar 

  • Swartz, G.A., Computer model of amorphous silicon solar cell, J. Appl. Phys. 53 (1982) 712–719.

    Article  CAS  Google Scholar 

  • Swartz, R.J., J.L. Gray, and G.B. Turner, P-i-n thin film silicon hydrogenated alloy solar cells: numerical model predictions, Technical Digest of the International PVSEC-1, Kobe, Japan (1984) 123–126.

    Google Scholar 

  • Tasaki, H., W.Y. Kim, M. Hallerdt, M. Konagai, and K. Takahashi, Computer simulation model of the effects of interface states on high performance amorphous silicon solar cells, J. Appl. Phys. 63 (1988) 550–560.

    Article  CAS  Google Scholar 

  • Taylor, G.W., and J.G. Simmons, Basic equations for statistics, recombination processes, and photoconductivity in amorphous insulators and semiconductors, J. Non-Cryst. Solids 8-10 (1972) 940–946.

    Article  Google Scholar 

  • Tiedje, T., Information about band-tail states from time-of-flight experiments, in: Hydrogenated Amorphous Silicon, Part C (Semiconductors and Semimetals Vol. 21), Ed. Jacques I. Pankove (Academic Press, 1984) 207.

    Google Scholar 

  • Wentinck, H.M., Carrier injection in amorphous silicon devices, Ph.D. thesis, Delft University of Technology, 1988.

    Google Scholar 

  • Willemen, J.A., M. Zeman, and J.W. Metselaar, Computer modeling of amorphous silicon tandem cells, 1st World Conference on Photovoltaic Energy Conversion, (Proc. 24th IEEE PV Specialists Conference, Waikoloa, HI, USA, December 1994) 599–602.

    Google Scholar 

  • Willemen, J.A., Modeling of amorphous silicon single and multi-junction solar cells, Ph.D. thesis, Delft University of technology, 1998.

    Google Scholar 

  • Winer, K., Defect formation in a-Si:H, Phys. Rev. B 41, (1990) 12150.

    Article  CAS  Google Scholar 

  • Zeman, M, G. Tao, M. Trijssenaar, J.A. Willemen, J.W. Metselaar, and R. Schropp, Application of the defect pool model in modelling of a-Si:H solar cells, in: Amorphous Silicon Technology — 1995, edited by M. Hack, E.A. Schiff, A. Madan, M. Powell, and A. Matsuda, Materials Research Society Symp. Proc. 377 (1995) 639–644.

    Google Scholar 

  • Zeman, M., J.A. Willemen, L.L.A. Vosteen, G. Tao and J.W. Metselaar, Computer modeling of current matching in a-Si:H/a-Si:H tandem solar cells on textured substrates, Solar Energy Materials and Solar Cells 46 (1997) 81–99.

    Article  CAS  Google Scholar 

  • Zimmer, J., H. Stiebig, and H. Wagner, Investigation of the electronic transport in PIN solar cells based on microcrystalline silicon by 2D numerical modeling, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schropp, R.E.I., Zeman, M. (1998). Electrical Device Modeling. In: Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology. Electronic Materials: Science & Technology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5631-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5631-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8317-8

  • Online ISBN: 978-1-4615-5631-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics