Skip to main content

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 5))

Abstract

The light-induced metastability of hydrogenated amorphous silicon was discovered in 1977 (Staebler and Wronski, 1977). The thin films deposited with the equipment available in those days were slightly n-type, and the light-induced change, later called the Staebler-Wronski effect (SWE), manifested itself in these materials as a shift of the Fermi level towards mid-gap accompanied by a reduction of the dark conductivity and the photoconductivity. In 1980, it was established that the SWE is a bulk effect rather than a surface band bending effect (Staebler and Wronski, 1980). Since then, all experimental data have shown evidence that exposure of hydrogenated amorphous silicon to light increases the density of neutral silicon dangling bonds. The excess defects, which are metastable as they can be removed in 1 – 3 hours by thermal annealing above 150 °C, have a roughly one order of magnitude higher concentration than the as-deposited dangling bonds that are initially present in device-quality material, and thus significantly reduce the lifetime of free carriers. The vast body of experiments carried out during the last 20 years by numerous laboratories suggests that the creation of metastable dangling bonds is the result of recombination events between carriers created by light absorption or by injection in the dark. Although it takes 10 – 100 million recombination events to create only a single metastable dangling bond, the concentration of ≈ 1017 cm-3 defects at which the SWE saturates does impose a limitation to the maximum obtainable conversion efficiency in amorphous silicon based solar cells and is still an important drawback for this technology.

I honestly can’t remember the moment when I realized that there was something funny going on, but Chris remembers I accused him (jokingly I’m sure) that he couldn’t measure these samples right. —David L. Staebler, April 3, 1997

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acco, S., D.L. Williamson, P.A. Stolk, F.W. Saris, M.J. van den Boogaard, W.C. Sinke, W.F. van der Weg, and S. Roorda, Hydrogen solubility and network stability in amorphous silicon, Phys. Rev. B 53 (1996) 4415–4427.

    Article  CAS  Google Scholar 

  • Adler, D., Origin of the photo-induced changes in hydrogenated amorphous silicon, Solar Cells 9 (1983) 133–148.

    Article  CAS  Google Scholar 

  • Bar-Yam, Y., and J.D. Joannopoulos, Theories of defects in amorphous semiconductors, J. Non-Cryst. Solids 97 & 98 (1987) 467–474.

    Article  Google Scholar 

  • Bennett, M., K. Rajan, and K. Kritikson, Amorphous silicon based solar cells deposited from H 2-diluted SiH4 at low temperatures, Proc. of the 23rd IEEE PV Spec. Conf. (1993) 845–849.

    Google Scholar 

  • Biswas, R., Q. Li, B.C. Pan, and Y. Yoon, Reactivity and migration of hydrogen in a-Si:H, in: Amorphous and Microcrystalline Silicon Technology — 1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, and I. Shimizu, Materials Research Society Symp. Proc. 467 (1997) 135–140.

    Google Scholar 

  • Brandt, M.S., A. Asano, and M. Stutzmann, Are there charged dangling bonds in device quality amorphous silicon?, in: Amorphous Silicon Technology — 1993, edited by E.A. Schiff, M.J. Thompson, A. Madan, K. Tanaka, P.G. LeComber, Materials Research Society Symp. Proc. 297 (1993) 201–206.

    Google Scholar 

  • Branz, H.M., and R.S. Crandall, Defect equilibrium thermodynamics in hydrogenated amorphous silicon: consequences for solar cells, Solar Cells 27 (1989) 159–168.

    Article  CAS  Google Scholar 

  • Branz, H.M., Hydrogen collision model of light-induced metastability in hydrogenated amorphous silicon, Solid State Commun. 105 (1998) 387–391.

    Article  CAS  Google Scholar 

  • Branz, H.M., Hydrogen collision model of the Staebler-Wronski effect: microscopics and kinetics, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

  • Brüggeman, R., C. Main, and G.H. Bauer, Simulation of the steady state and transient phenomena in a-Si:H pin structures and films, in: Amorphous Silicon Technology — 1992, edited by M.J. Thompson, Y. Hamakawa, P.G. LeComber, A. Madan, and E. Schiff, Materials Research Society Symp. Proc. 258 (1992) 729–734.

    Google Scholar 

  • Catalano, A., Advances in a-Si:H alloys for high efficiency devices, Proc. 21st IEEE Photovoltaic Specialists Conference (IEEE, New York, 1990) 36–40.

    Google Scholar 

  • Daey Ouwens, J., and R.E.I. Schropp Hydrogen microstructure in hydrogenated amorphous silicon, Phys. Rev. B 54 (1996) 17759–17762.

    Article  CAS  Google Scholar 

  • Dalai, V.L., and G. Baldwin, Design and fabrication of graded bandgap solar cells in amorphous Si and alloys, in: Amorphous Silicon Technology — 1993, edited by E.A. Schiff, M.J. Thompson, A. Madan, K. Tanaka, P.G. LeComber, Materials Research Society Symp. Proc. 297 (1993) 833–838.

    Google Scholar 

  • Fan, J., and J. Kakalios, Light-induced changes of the non-Gaussian 1/f noise statistics in doped hydrogenated amorphous silicon, Phil. Mag. B 69 (1994) 595–608.

    Article  CAS  Google Scholar 

  • Fischer, D., N. Wyrsch, CM. Fortmann, and A.V. Shah, Amorphous silicon solar cells with graded low-level doped i-layers characterised by bifacial measurements, Proc. of the 23rd IEEE PV Spec. Conf. (1993) 878–884.

    Google Scholar 

  • Fritzsche, H., Search for explaining the Staebler-Wronski effect in: Amorphous and Microcrystalline Silicon Technology — 1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, and I. Shimizu, Materials Research Society Symp. Proc. 467 (1997) 19–30.

    Google Scholar 

  • Gleskova, H., J.N. Bullock, and S. Wagner, Isolating the rate of light-induced annealing of the dangling-bond defects in a-Si:H, J. Non-Cryst. Solids 164-166 (1993) 183–186.

    Article  CAS  Google Scholar 

  • Godet, C., P. Morin, and P. Rocai Cabarrocas, Influence of the dilute-phase SiH bond concentration on the steady-state defect density in a-Si:H, J. Non-Cryst. Solids 198-200 (1996) 449–452.

    Article  CAS  Google Scholar 

  • Goto, T., S. Nonomura, M. Nishio, N. Masui, S. Nitta, M. Kondo, and A. Matsuda, Detection of photoinduced structural change in a-Si:H by bending effect, J. Non-Cryst. Solids 227-230 (1998) 263–266.

    Article  Google Scholar 

  • Greim, O., J. Weber, Y. Baer, and U. Krol, Hydrogen diffusion in a-Si:H stimulated by intense illumination, Phys. Rev. B 50 (1994) 10644–10648.

    Article  CAS  Google Scholar 

  • Guha, S., J. Yang, A. Pawlikiewicz, T. Glatfelter, R. Ross, and S.R. Ovshinsky, Bandgap profiling for improving the efficiency of amorphous silicon alloy solar cells, Appl. Phys. Lett. 54 (1989) 2330–2332.

    Article  CAS  Google Scholar 

  • Han, D., and H. Pritzsche, Study of light-induced creation of defects in a-Si:H by means of single and dual-beam photoconductivity, J. Non-Cryst. Solids 59 & 60 (1983) 397–400.

    Article  Google Scholar 

  • Hari, P., P. Taylor, and R.A. Street, Effect of light soaking on the local motion of hydrogen in hydrogenated amorphous silicon, in: Amorphous Silicon Technology — 1994, edited by E.A. Schiff, M. Hack, A. Madan, M. Powell, and A. Matsuda, Materials Research Society Symp. Proc. 336 (1994) 329–334.

    Google Scholar 

  • Hata, N., T. Kamei, H. Okamoto, and A. Matsuda, Polarized electroabsorption in pulse and continuous light-soaked a-Si:H-Structural change other than defect creation, in: Amorphous and Microcrystalline Silicon Technology — 1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, and I. Shimizu, Materials Research Society Symp. Proc. 467 (1997) 61–66.

    Google Scholar 

  • Hishikawa, Y., K. Ninomiya, E. Maruyama, S. Kuroda, A. Terakawa, K. Sayama, H. Tarui, M. Sasaki, S. Tsuda, and S. Nakano, Approaches for stable multi-junction a-Si solar cells, 1st World Conference on Photovoltaic Energy Conversion, (Proc. 24th IEEE PV Specialists Conference, Waikoloa, HI, USA, December 1994) 386–393.

    Google Scholar 

  • Kamei, T., N. Hata, A. Matsuda, T. Uchimya, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon, Appl. Phys. Lett. 68 (1996) 2380–2382.

    Article  CAS  Google Scholar 

  • Kazmerski, L.L., Photovoltaics: A review of cell and module efficiencies Renewable and Sustainable Energy Reviews 1, Nos. 1/2 (1997) 71–170.

    Article  CAS  Google Scholar 

  • Kong, G., D. Zhang, G. Yue, and X. Liao, Photodilatation effect in undoped a-Si:H films, Phys. Rev. Lett. 79 (1997) 4210–4213.

    Article  CAS  Google Scholar 

  • Kong, G., Light excited structural instability in a-Si:H, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

  • Mahan, A.H., J. Carapella, B.P. Nelson, R.S. Crandall, and I. Balberg, Deposition of device quality, low H content amorphous silicon, J. Appl. Phys. 69 (1991) 6728–6730.

    Article  CAS  Google Scholar 

  • Manfredotti, C., F. Fizzotti, M. Boero, P. Pastorino, P. Polesello, and E. Vittone, Influence of hydrogen-bonding configurations on the physical properties of hydrogenated amorphous silicon, Phys. Rev. B 50 (1994) 18046–18053.

    Article  CAS  Google Scholar 

  • Masson, D.P., A. Ouhlal, and A. Yelon, Long-range structural relaxation in the Staebler-Wronski effect, J. Non-Cryst. Solids 190 (1995) 151–156.

    Article  CAS  Google Scholar 

  • McMahon, T. J., and M.S. Bennet, Film morphology, excess shunt current and stability in triple-junction cells, in: Amorphous Silicon Technology — 1992, edited by M.J. Thompson, Y. Hamakawa, P.G. LeComber, A. Madan, and E. Schiff, Materials Research Society Symp. Proc. 258 (1992) 941–946.

    Google Scholar 

  • Meier, J., R. Flückiger, H. Keppner, and A. Shah, Complete microcrystalline p-i-n solar cell — crystalline or amorphous cell behavior, Appl. Phys. Lett. 65 (1994) 860–862.

    Article  CAS  Google Scholar 

  • Meiling, H., and R.E.I. Schropp, Stable amorphous silicon thin film transistors, Appl. Phys. Lett. 70 (1997) 2681–2683.

    Article  CAS  Google Scholar 

  • Pantelides, S.T., Defects in amorphous silicon: a new perspective, Phys. Rev. Let. 57 (1986) 2979–2982.

    Google Scholar 

  • Pashmakov, B., and H. Fritzsche, Comment on “Photodilatation effect in undoped a-Si:H films, Phys. Rev. Lett. 80 (1998) 5704–5705.

    CAS  Google Scholar 

  • Rocai Cabarrocas, P., Plasma deposition of silicon clusters: a means to produce medium range ordered silicon thin films, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

  • Santos, P.V., N.M. Johnson, and R.A. Street, Light-enhanced hydrogen motion in a-Si:H, Phys. Rev. Let. 67 (1991) 2686–2689.

    Article  CAS  Google Scholar 

  • Schropp, R.E.I., A. Sluiter, M.B. von der Linden, and J. Daey Ouwens, Stability of amorphous silicon materials incorporated in solar cells and intrinsic layer profiling for enhanced stabilized performance, J. Non-Cryst. Solids 164-166 (1993) 709–712.

    Article  CAS  Google Scholar 

  • Smith, Z.E., and S. Wagner, Implications of the ‘Defect Pool’ concept for ‘metastable’ and’ stable’ defects in amorphous silicon, in: “Amorphous Silicon and Related Materials”, edited by H. Fritzsche (World Scientific, Singapore, 1988) 409–460.

    Google Scholar 

  • Staebler, D.L., and C.R. Wronski, Reversible conductivity changes in discharge produced amorphous Si, Appl. Phys. Lett. 31 (1977) 292–294.

    Article  CAS  Google Scholar 

  • Staebler, D.L., and C.R. Wronski, Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon, J. Appl. Phys. 51 (1980) 3262–3268.

    Article  CAS  Google Scholar 

  • Stradins, P., and H. Fritzsche, Photoinduced creation of metastable defects in a-Si:H at low temperatures and their effect on the photoconductivity, Phil. Mag. B 69 (1994) 121–139.

    Article  CAS  Google Scholar 

  • Stutzmann, M., W.B. Jackson, and C.C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: a systematic study, Phys. Rev. B 32 (1985) 23–47.

    Article  CAS  Google Scholar 

  • Sugiyama, S., J. Yang, and S. Guha, Improved stability against light-exposure in deuterated amorphous silicon alloy solar cells, in: Amorphous and Microcrystalline Silicon Technology — 1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, and I. Shimizu, Materials Research Society Symp. Proc. 467 (1997) 49–54.

    Google Scholar 

  • Tsai, C.C., J.C. Knights, R.A. Lujan, B. Wacker, B.L. Stafford, and M.J. Thompson, Amorphous Si prepared in a UHV plasma deposition system, J. Non-Cryst. Solids 59 & 60 (1983) 731–734.

    Article  Google Scholar 

  • Von der Linden, M.B. Electronic Defects in Amorphous Silicon. Materials and Devices, Ph.D. Thesis, Utrecht University, The Netherlands (1994).

    Google Scholar 

  • Von Roedern, B., Innovative optimization procedures for solar cells based on a unique model for junction optimization, 12th International E.C. Photovoltaic Solar Energy Conference 1994, Eds. R. Hill, W. Palz, and P. Helm (Stephens and Associates, 1994) 1354-1358.

    Google Scholar 

  • Xu, X., J. Yang, and S. Guha, On the lack of correlation between film properties and solar cell performance of amorphous silicon-germanium alloys, Appl. Phys. Lett. 62 (1993) 1399–1401.

    Article  CAS  Google Scholar 

  • Yamamoto, K., Thin film poly-Si solar cell on glass substrate fabricated at low temperature, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

  • Yamasaki, S., and J. Isoya, Pulsed ESR study of light-induced metastable defect in a-Si:H, J. Non-Cryst. Solids 164-166 (1993) 169–174.

    Article  CAS  Google Scholar 

  • Yang, J., and S. Guha, Double-junction amorphous silicon based solar cells with 11 % stable efficiency, Appl. Phys. Lett. 61 (1992) 2917–2919.

    Article  CAS  Google Scholar 

  • Yue, G., G. Kong, D. Zhang, Z. Ma, S. Sheng, and X. Liao, Dielectric response and its light-induced change in undoped a-Si:H films below 13 MHz, Phys. Rev. B 57 (1998) 2387–2392.

    Article  CAS  Google Scholar 

  • Zafar, S., and E.A. Schiff, Hydrogen-mediated model for defect metastability in hydrogenated amorphous silicon, Phys. Rev. B 40 (1989) 5235–5238.

    Article  CAS  Google Scholar 

  • Zhao, Y., D. Zhang, G. Kong, G. Pan, and X. Liao, Evidence for light-induced increase of Si-H bonds in undoped a-Si:H, Phys. Rev. Lett. 74 (1995) 558–561.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schropp, R.E.I., Zeman, M. (1998). Metastability. In: Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology. Electronic Materials: Science & Technology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5631-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5631-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8317-8

  • Online ISBN: 978-1-4615-5631-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics