Skip to main content

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 5))

Abstract

Amorphous and microcrystalline silicon thin films are still commonly produced using the method that first resulted in hydrogen incorporation in the material (Sterling and Swann, 1965). The deposition method is a glow discharge technique, also known as Plasma Enhanced Chemical Vapor Deposition (PECVD). A silicon containing gas, usually silane (SiH4), is admitted to a vacuum reactor chamber. A gas discharge is then initiated and maintained by an electric field between two parallel plates, using either a dc voltage or a voltage in the radio frequency domain (13.65 – 200 MHz). The pressure is typically 0.1 – 1 mbar, depending on the geometry of the vacuum chamber. The hydrogen bonded to silicon was later recognized as being essential for tighing up the unpaired valence electrons that would otherwise lead to electronic defect states.

…; this clearly demonstrates that the excitation frequency is an important parameter in plasma processing. —H. Curtins, N. Wyrsch, A. V. Shah, 2nd February 1987

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer, S., W. Herbst, B. Schröder, and H. Oechsner, a-Si:H solar cells using the Hot-Wire technique — how to exceed efficiencies of 10 %, Proc. 26th IEEE PVSC, Anaheim, CA, (1997) 719–722.

    Google Scholar 

  • Beck, N., J. Meier, J. Fric, Z. Remes, A. Poruba, R. Flückiger, J. Pohl, A. Shah, and M. Vaněček, Enhanced optical absorption in microcrystalline silicon, J. Non-Cryst. Solids 198-200 (1996) 903–906.

    Article  CAS  Google Scholar 

  • Bezemer, J., and W.G.J.H.M. van Sark, Structure of amorphous silicon, deposited by VHF plasmas, in: Electronic, Opto-electronic and Magnetic Thin Films, Proceedings of the 8th International School on Condensed Matter Physics (ISCMP), Varna, Bulgaria, 1994, Edited by J.M. Marshall, N. Kirov, and A. Vavrek (John Wiley & Sons, New York, 1995) 219–226.

    Google Scholar 

  • Brogueira, P., J.P. Conde, S. Arekat, and V. Chu, Amorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition at filament temperatures between 1500 and 1900 ° C, J. Appl. Phys. 79 (1996) 8748–8760.

    Article  CAS  Google Scholar 

  • Burno, G., P. Capezzuto, and A. Madan, Plasma deposition of amorphous silicon-based materials (Academic Press, Inc., 1995).

    Google Scholar 

  • Chatham, H., and P.K. Bhat, High deposition rate intrinsic amorphous silicon materials and p-i-n devices from disilane, in: ”Oct. 1989 SERI Subcontractors Review Meeting”, Golden, Co.” (SERI/STR-211-3562, 1989).

    Google Scholar 

  • Chatham, H., P. Bhat, A. Benson, and C. Matovich, High-efficiency amorphous silicon p-i-n solar cells deposited from disilane at rates up to 2 nm/s using VHF discharges, J. Non-Cryst. Solids 115 (1989b) 201–203.

    Article  CAS  Google Scholar 

  • Chaudhuri, P., S. Ray, and A.K. Barua, The effect of mixing hydrogen with silane on the electronic and optical properties of a-Si:H thin films, Thin Solid Films 113 (1984) 261–270.

    Article  CAS  Google Scholar 

  • Cifre, J., J. Bertomeu, J. Puigdollers, M.C. Polo, J. Andreu, and A. Lloret, Polycrys-talline silicon films obtained by hot-wire chemical vapour deposition, Appl. Phys. A 59 (1994) 645–651.

    Article  Google Scholar 

  • Crandall, R.S., A.H. Mahan, B.P. Nelson, M. Vaněček, and I. Balberg, Properties of hydrogenated amorphous silicon produced at high temperature, AIP Conf. Proc. 268 (1992) 81–87.

    Article  CAS  Google Scholar 

  • Curtins, H., N. Wyrsch, and A.V. Shah, High-rate deposition of amorphous hydrogenated silicon: effect of plasma excitation frequency, Electronics Lett. 23 (1987) 228–230.

    Article  Google Scholar 

  • Curtins, H., N. Wyrsch, M. Favre, and A.V. Shah, Influence of Plasma Excitation Frequency for a-Si:H thin film deposition, Plasma Chem. and Plasma Processing 7 (1987a) 267–273.

    Article  CAS  Google Scholar 

  • Curtins, H., N. Wyrsch, M. Favra, K. Prasad, M. Brechet, and A.V. Shah, Influence of plasma excitation frequency on deposition rate and on film properties for hydrogenated amorphous silicon, in: Amorphous Silicon Semiconductors — Pure and Hydrogenated, edited by A. Madan, M. Thompson, D. Adler, and Y. Hamakawa, Materials Research Society Symp. Proc. 95 (1987b) 249–253.

    Google Scholar 

  • Daey Ouwens, J., R.E.I. Schropp, C.H.M. van der Werf, M.B. von der Linden, C.H.M. Marée, W.F. van der Weg, P. Rava, F. Demichelis, C.F. Pirri, and E. Tresso, Effect of electrode spacing and hydrogen dilution on a-SiC:H and a-Si:H layers, in: Amorphous Silicon Technology — 1993, edited by E.A. Schiff, M.J. Thompson, A. Madan, K. Tanaka, P.G. LeComber, Materials Research Society Symp. Proc. 297 (1993) 61–66.

    Google Scholar 

  • Dalal, V.L., E.X. Ping, S. Kaushal, M. Bhan, and M. Leonard, Growth of high-quality amorphous silicon films with significantly improved stability, Appl. Phys. Lett. 64 (1994) 1862–1864.

    Article  CAS  Google Scholar 

  • Dalal, V.L., T. Maxson, R. Girvan, and S. Haroon, Stability of single and tandem junction a-Si:H solar cells grown using the ECR process, in: Amorphous and Microcrystalline Silicon Technology — 1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, and I. Shimizu, Materials Research Society Symp. Proc. 467 (1997) 813–817.

    Google Scholar 

  • Doyle, J., R. Robertson, G.H. Lin, M.Z. He, and A. Gallagher, Production of high-quality amorphous silicon films by evaporative silane surface decomposition, J. Appl. Phys. 64 (1988) 3215–3223.

    Article  CAS  Google Scholar 

  • Dusane, R.O., S.R. Dusane, V.G. Bhide, and S.T. Kshirsagar, Hydrogenated microcrystalline silicon films produced at low temperature by the hot wire deposition method, Appl. Phys. Lett. 63 (1993) 2201–2203.

    Article  CAS  Google Scholar 

  • Dutta, J., U. Kroll, P. Chabloz, A. Shah, A.A. Howling, J.-L. Dorier, and Ch. Hollenstein, Dependence of intrinsic stress in hydrogenated amorphous silicon on excitation frequency in a plasma-enhanced chemical vapor deposition process, J. Appl. Phys. 72 (1992) 3220–3222.

    Article  CAS  Google Scholar 

  • Faraji, M., S. Gokhale, S.M. Choudhari, M.G. Takwale, and S.V. Ghaisas, High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications, Appl. Phys. Lett. 60 (1992) 3289–3291.

    Article  CAS  Google Scholar 

  • Feenstra, K.F., C.H.M. van der Werf, E.C. Molenbroek, and R.E.I. Schropp, Deposition of device quality amorphous silicon by hot-wire CVD, in: Amorphous and Microcrystalline Silicon Technology-1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, and I. Shimizu, Materials Research Society Symp. Proc. 467 (1997) 645–650.

    Google Scholar 

  • Feenstra, K.F.(Ph.D. Thesis, Utrecht University, The Netherlands, 1998).

    Google Scholar 

  • Gallagher, A., Neutral radical deposition from silane discharges, J. Appl. Phys. 63 (1988) 2406–2413.

    Article  CAS  Google Scholar 

  • Ganguly, G., and A. Matsuda, Importance of surf ace processes in defect formation in a-Si:H, J. Non-Cryst. Solids 164-166 (1993) 31–36.

    Article  CAS  Google Scholar 

  • Ganguly, G., and A. Matsuda, Role of hydrogen dilution in improvement of a-SiGe:H alloys, J. Non-Cryst. Solids 198-200 (1996) 559–562.

    Article  CAS  Google Scholar 

  • Hamers, E.A.G., W.G.J.H.M. van Sark, J. Bezemer, H. Meiling, and W.F. van der Weg, Structural properties of a-Si:H related to ion energy in VHF silane deposition plasmas, J. Non-Cryst. Solids 226 (1998) 205–216.

    Article  CAS  Google Scholar 

  • Hattori, Y., D. Kruangam, K. Katoh, Y. Nitta, H. Okamoto and Y. Hamakawa, High-conductivity wide band gap p-type a-SiC:H prepared by ECR-CVD and its application to high efficiency a-Si basis solar cells, in: Proc. of the 19th IEEE PV Specialists Conf., 1987, 689–694.

    Google Scholar 

  • Heintze, M., R. Zedlitz, and G.H. Bauer, Mechanism of high rate a-Si:H deposition in a VHF plasma, in: Amorphous Silicon Technology — 1993, edited by E.A. Schiff, M.J. Thompson, A. Madan, K. Tanaka, P.G. LeComber, Materials Research Society Symp. Proc. 297 297 (1993) 49–54.

    Google Scholar 

  • Heintze, M., R. Zedlitz, H.N. Wanka, and M.B. Schubert, Amorphous and microcrystalline silicon by hot wire chemical vapor deposition, J. Appl. Phys. 79 (1996) 2699–2706.

    Article  CAS  Google Scholar 

  • Ichikawa, Y., K. Aizawa, H. Shimabukuro, Y. Nagao, and H. Sakai, Deposition process and film properties of a-Si alloy films, Technical Digest of the International PVSEC-3, Tokyo, Japan (1987) A-Ip-5.

    Google Scholar 

  • Ishihara, S., D. He, M. Nakata, and I. Shimizu, Preparation of high-quality microcrystalline silicon from fluorinated precursors by a layer-by-layer technique, Jpn. J. Appl. Phys. 32 (1993) 1539–1545.

    Article  CAS  Google Scholar 

  • Ishihara, S., D. He, and I. Shimizu, Structure of polycrystalline silicon thin film fabricated from fluorinated precursors by layer-by-layer technique, Jpn. J. Appl. Phys. 33 (1994) 51–56.

    Article  CAS  Google Scholar 

  • Jansen, F., I. Chen, and M.A. Machonkin, On the thermal dissociation of hydrogen, J. Appl. Phys. 66 (1989) 5749–5755.

    Article  CAS  Google Scholar 

  • Jones, S.J., X. Deng, T. Liu, and M. Izu, Preparation of a-Si:H and a-SiGe:H i-layers for nip solar cells at high deposition rates using a very high frequency technique, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

  • Keppner, H., P. Torres, J. Meier, R. Platz, D. Fischer, U. Kroll, S. Dubail, J.A. Anna Selvan, N. Pellaton Vaucher, Y. Ziegler, R. Tscharner, Ch. Hof, N. Beck, M. Goetz, P. Pernet, M. Goerlitzer, N. Wyrsch, J. Veuille, J. Cuperus, A. Shah, and J. Pohl, The “Micromorph” cell: a new way to high-efficiency low-temperature crystalline silicon thin-film cell manufacturing?, in: Advances in Microcrystalline and Nanocrystalline Semiconductors — 1996, edited by R.W. Collins, P.M. Faucher, I. Shimizu, J.C. Vial, T. Shimada, and A.P. Alivisatos, Materials Research Society Symp. Proc. 452 (1996) 865–876.

    Google Scholar 

  • Kessels, W.M.M., M.C.M. van de Sanden, and D.C. Schram, Hydrogen poor cationic silicon clusters in an expanding argon-hydrogen-silane plasma, Appl. Phys. Lett. 72 (1998) 2397–2399.

    Article  CAS  Google Scholar 

  • Kinoshita, T., M. Shima, A. Terakawa, M. Isomura, H. Haku, K. Wakisaka, M. Tanaka, S. Kiyama, and S. Tsuda, Effect of hydrogen dilution on a-Si/a-SiGe tandem solar cells, Proceedings of the 14th European Photovoltaic Solar Energy Conference, June 30–July 4, Barcelona, Spain, Eds. H.A. Ossenbrink, P. Helm, and H. Ehmann (H.S. Stephens and Associates, 1997) p 566–569.

    Google Scholar 

  • Kondo, M., Y. Toyoshima, A. Matsuda, and K. Ikuta, Substrate dependence of initial growth of microcrystalline silicon in plasma-enhanced chemical vapor deposition, J. Appl. Phys. 80 (1996) 6061–6063.

    Article  CAS  Google Scholar 

  • Kurihara, K., K. Sasaki, M. Kawarada, and N. Koshino, High rate synthesis of diamond by dc plasma jet chemical vapor deposition, Appl. Phys. Lett. 52 (1988) 437–438.

    Article  CAS  Google Scholar 

  • Luft, W. and Y. Simon Tsuo, Hydrogenated amorphous silicon alloy deposition processes, Applied Physics Series 1 (Marcel Dekker, Inc., New York, Basel, Hong Kong, 1993).

    Google Scholar 

  • Madan, A., P. Rava, R.E.I. Schropp, and B. von Roedern, A new modular multicham-ber plasma-enhanced chemical vapor deposition system, Appl. Surf. Sci. 70/71 (1993) 716–721.

    Article  Google Scholar 

  • Mahan, A.H., and M. Vaněček, A reduction in the Staebler-Wronski effect observed in low H content a-Si:H films deposited by the hot wire technique, AIP Conf. Proc. 234 (1991) 195–202.

    Article  CAS  Google Scholar 

  • Mahan, A.H., J. Carapella, B.P. Nelson, R.S. Crandall, and I. Balberg, Deposition of device quality, low H content amorphous silicon, J. Appl. Phys. 69 (1991a) 6728–6730.

    Article  CAS  Google Scholar 

  • Mahan, A.H., B.P. Nelson, S. Salamon, and R.S. Crandall, Deposition of device quality, low H content a-Si:H by the hot wire technique, J. Non-Cryst. Solids 137 & 138 (1991b) 657–660.

    Article  Google Scholar 

  • Mahan, H., R.C. Reedy Jr., E. Iwaniczko, Q. Wang, B.P. Nelson, Y. Xu, A.C. Gallagher, H.M. Branz, R.S. Crandall, J. Yang, and S. Guha, H out-diffusion and device performance in n-i-p solar cells utilizing high temperature hot wire a-Si:H i-layers, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

  • Matsuda, A., Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma, J. Non-Cryst. Solids 59-60 (1983) 767–774.

    Article  CAS  Google Scholar 

  • Matsumura, H., Catalytic Chemical Vapor Deposition (CTL-CVD) method producing high quality hydrogenated amorphous silicon, Jpn. J. Appl. Phys. 25 (1986) L949–L951.

    Article  CAS  Google Scholar 

  • Matsumura, H., Catalytic chemical vapor deposition (CTL-CVD) method to obtain high quality amorphous silicon alloys, in: Amorphous Silicon Technology, edited by A. Madan, M.J. Thompson, P.C. Taylor, P.G. LeComber, and Y. Hamakawa, Materials Research Society Symp. Proc. 118 (1988) 43–48.

    Google Scholar 

  • Matsumura, H., Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon, J. Appl. Phys. 65 (1989) 4396–4402.

    Article  CAS  Google Scholar 

  • Matsumura, H., A. Heya, R. Iizuka, A. Izumi, A.-Q. He, and N. Otsuka, Low-temperature formation of device-quality polysilicon films by CAT-CVD method, in: Advances in Microcrystalline and Nanocrystalline Semiconductors — 1996, edited by R.W. Collins, P.M. Faucher, I. Shimizu, J.C. Vial, T. Shimada, and A.P. Alivisatos, Materials Research Society Symp. Proc. 452 (1997) 982–988.

    Google Scholar 

  • Meier, J., R. Flückiger, H. Keppner, and A. Shah, Complete microcrystalline p-i-n solar cell — crystalline or amorphous cell behavior, Appl. Phys. Lett. 65 (1994) 860–862.

    Article  CAS  Google Scholar 

  • Meier, J., S. Dubail, D. Fischer, J.A. Anna Selvan, N. Pellaton Vaucher, R. Platz, C. Hof, R. Flückiger, U. Kroll, N. Wyrsch, P. Torres, H. Keppner, A. Shah, and K.-D. Ufert, The “micromorph” solar cells: a new way to high efficiency thin film silicon solar cells, Proceedings of the 13th EC Photovoltaic Solar Energy Conference, Edited by W. Freiesleben, W. Palz, H.A. Ossenbrink, and P. Helm (H.S. Stephens and Assoc., 1995) 1445.

    Google Scholar 

  • Meier, J., H. Keppner, S. Dubail, U. Kroll, P. Torres, P. Pernet, Y. Ziegler, J.A. Anna Selvan, J. Cuperus, D. Fischer, and A. Shah, Microcrystalline single-junction and micromorph tandem thin-film silicon solar cells, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

  • Meiling, H., M.J. van den Boogaard, R.E.I. Schropp, J. Bezemer, and W.F. van der Weg, Hydrogen dilution of silane: Correlation between the structure and optical band gap in GD a-Si:H films, in: Amorphous Silicon Technology — 1990, edited by P.C. Taylor, M.J. Thompson, P.G. LeComber, Y. Hamakawa, and A. Madan, Materials Research Society Symp. Proc. 192 (1990) 645–650.

    Google Scholar 

  • Meiling, H., Deposition of amorphous silicon thin films and solar cells, Ph. D. Thesis (Utrecht University, Utrecht, The Netherlands, 1991).

    Google Scholar 

  • Meiling, H., W.G.J.H.M. van Sark, J. Bezemer, and W.F. van der Weg, Depositionrate reduction through improper substrate-to-electrode attachment in very-high-frequency deposition of a-Si:H, J. Appl. Phys. 80 (1996) 3546–3551.

    Article  CAS  Google Scholar 

  • Meiling, H., J. Bezemer, R.E.I. Schropp, and W.F. van der Weg, High deposition rate a-Si:H through VHF-CVD of Ar diluted silane, in: Amorphous and Microcrystalline Silicon Technology — 1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, and I. Shimizu, Materials Research Society Symp. Proc. 467 (1997a) 459–470.

    Google Scholar 

  • Meiling, H., and R.E.I. Schropp, Stable amorphous silicon thin film transistors, Appl. Phys. Lett. 70 (1997b) 2681–2683.

    Article  CAS  Google Scholar 

  • Meiling, H., A.M. Brockhoff, J.K. Rath, and R.E.I. Schropp, Transistors with a profiled active layer made by hot-wire CVD, in: Amorphous and Microcrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

  • Middya, A.R., J. Guillet, J. Perrin, A. Lloret and E. Bourree, Hot-wire chemical vapour deposition of polycrystalline silicon films, Proceedings of the 13th EC Photovoltaic Solar Energy Conference, edited by W. Freiesleben, W. Palz, H.A. Ossenbrink, and P. Helm (H.S. Stephens and Ass., Bedford, UK, 1995) 679–682.

    Google Scholar 

  • Middya, A.R., S. Hazra, S. Ray, C. Longeaud, and J. P. Kleider, a-Si:H and a-SiGe:H alloys fabricated close to powder regime of rf PECVD, in: Amorphous and Micro-crystalline Silicon Technology — 1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, and I. Shimizu, Materials Research Society Symp. Proc. 467 (1997) 615–620.

    Google Scholar 

  • Molenbroek, E.C., Deposition of hydrogenated amorphous silicon with the hot-wire technique (Ph.D. Thesis, University of Colorado, 1995a).

    Google Scholar 

  • Molenbroek, E.C., A.H. Mahan, E.J. Johnson, and A.C. Gallagher, Film quality in relation to deposition conditions of a-Si:H films deposited by the “hot wire” method using highly diluted silane, J. Appl. Phys. 79 (1996) 7278–7292.

    Article  CAS  Google Scholar 

  • Molenbroek, E.C., A. H. Mahan, and A. Gallagher, Mechanisms influencing “hot-wire” deposition of hydrogenated amorphous silicon, J. Appl. Phys. 82 (1997) 1909–1917.

    Article  CAS  Google Scholar 

  • Nelson, B.P., E. Iwaniczko, R.E.I. Schropp, H. Mahan, E. Molenbroek, S. Salamon, and R.S. Crandall, Amorphous silicon solar cells incorporating hot-wire deposited intrinsic material, Proceedings of the 12th International E.C. Photovoltaic Solar Energy Conference 1994, Edited by R. Hill, W. Palz, and P. Helm, (H.S. Stephens and Associates, 1994) 679–682.

    Google Scholar 

  • Oda, S., J. Noda, and M. Matsumura, Preparation of a-Si:H films by VHP plasma CVD, in: Amorphous Silicon Technology, edited by A. Madan, M.J. Thompson, P.C. Taylor, P.G. LeComber, and Y. Hamakawa, Materials Research Society Symp. Proc. 118 (1988) 117–122.

    Google Scholar 

  • Okamoto, S., Y. Hishikawa, and S. Tsuda, New interpretation of the effect of hydrogen dilution of silane on glow-discharged hydrogenated amorphous silicon for stable solar cells, Jpn. J. Appl. Phys. 35 (1996) 26–33.

    Article  CAS  Google Scholar 

  • Papadopoulos, P., A. Scholz, S. Bauer, B. Schröder, and H. Öchsner, Deposition of device quality a-Si:H films with the hot-wire technique, J. Non-Cryst. Solids 164-166 (1993) 87–90.

    Article  Google Scholar 

  • Perrin, J., Y. Takeda, N. Hirano, Y. Takeuchi, and A. Matsuda, Sticking and recombination of the SiH 3 radical on hydrogenated amorphous silicon: the catalytic effect of diborane, Surf. Sci. 210 (1989) 114–128.

    Article  CAS  Google Scholar 

  • Perrin, J., and J. Schmitt, Diagnostics and modelling of rf plasma deposition of amorphous silicon and powder formation in large area symmetric parallel-plate reactors, 11th E.C. Photovoltaic Solar Energy Conference 1992, Eds. L. Guimarães, W. Palz, C. de Reyff, H. Kiess, and P. Helm (Harwood Academic Publishers, 1992) 80–83.

    Google Scholar 

  • Perrin, J., in: Plasma deposition of amorphous-based materials, eds. G. Bruno, P. Capezzuto, and A. Madan (Academic Press Inc., San Diego, CA, 1995) 216.

    Google Scholar 

  • Rech, B., C. Beneking, S. Wieder, Th. Eickhoff, and H. Wagner, Development of a-Si:H/a-Si:H stacked solar cells with high efficiency and high light stability, Proceedings of the 13th EC Photovoltaic Solar Energy Conference, Edited by W. Freiesleben, W. Palz, H.A. Ossenbrink, and P. Helm (H.S. Stephens and Assoc., 1995) 613.

    Google Scholar 

  • Rath, J.K., M. Galetto, C.H.M. van der Werf, K. Feenstra, H. Meiling, M.W.M. van Cleef, and R.E.I. Schropp, Hot Wire CVD: A one-step process to obtain thin film poly crystalline silicon at a low temperature on cheap substrates, Technical Digest of the 9th International Photovoltaic Science and Engineering Conference, Nov. 11–15, 1996, Miyazaki, Japan, p 227; J.K. Rath, H. Meiling, and R.E.I. Schropp, Low-temperature deposition of poly-crystalline silicon thin films by hot-wire CVD, Solar Energy Materials and Solar Cells 48 (1997) 269-277.

    Google Scholar 

  • Rath, J.K., A.J.M.M. van Zutphen, H. Meiling, and R.E.I. Schropp, Application of hot wire deposited intrinsic poly-silicon films in n-i-p cells and TFTs, in: Amorphous and Microcrystalline Silicon Technology — 1997, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, and I. Shimizu, Materials Research Society Symp. Proc. 467 (1997) 445–450.

    Google Scholar 

  • Rath, J.K., K.F. Feenstra, C.H.M. van der Werf, Z. Hartman, and R.E.I. Schropp, Profiled hot-wire CVD poly-Si:H films for an n-i-p cell on a metal substrate, presented at the 2nd World Conference and Exhibition on Photovoltaic Energy Conversion, Vienna, July 1998.

    Google Scholar 

  • Schmitt, J.P.M., J. Meot, P. Roubeau, and P. Parrens, New reactor design for low contamination amorphous silicon deposition, Proceedings of the 8th European Community Photovoltaic Solar Energy Conference, Florence 1988, Editors: I. Solomon, B. Equer, and P. Helm (Kluwer Academic Publishers, Dordrecht/Boston/London, The Netherlands, 1988) 964.

    Google Scholar 

  • Schropp, R.E.I., B. von Roedern, P. Klose, R.E. Hollingsworth, J. Xi, J. del Cueto, H. Chatham, and P.K. Bhat, Recent progress in multichamber deposition of high quality amorphous silicon solar cells on planar and compound curved substrates at GSI, Solar Cells 27 (1989) 59–68.

    Article  CAS  Google Scholar 

  • Schropp, R.E.I., K.F. Feenstra, E.C. Molenbroek, H. Meiling and J.K. Rath, Device-quality polycrystalline and amorphous silicon films by Hot Wire Chemical Vapor Deposition, Phil. Mag. B 76 (1997) 309–321.

    Article  CAS  Google Scholar 

  • Severens, R.J., M.C.M. van de Sanden, H.J.M. Verhoeven, J. Bastiaanssen, and D.C. Schram, On the effect of substrate temperature on a-Si:H deposition using an expanding thermal plasma, in: Amorphous Silicon Technology — 1996, edited by M. Hack, E.A. Schiff, S. Wagner, R. Schropp, and A. Matsuda, Materials Research Society Symp. Proc. 420 (1997) 341–346.

    Google Scholar 

  • Shibata, N., K. Fukuda, H. Ohtoshi, J. Hanna, S. Oda, and I. Shimizu, Growth of amorphous and crystalline silicon by HR-CVD, in: Amorphous Silicon Semiconductors — Pure and Hydrogenated, edited by A. Madan, M. Thompson, D. Adler, and Y. Hamakawa, Materials Research Society Symp. Proc. 95 (1987) 225–235.

    Google Scholar 

  • Shing, Y.H., Electron cyclotron resonance deposition and plasma diagnostics of a-Si:H and a-C:H films, Solar Cells 27 (1989) 331–340.

    Article  CAS  Google Scholar 

  • Shirafuji, J., S. Nagata, and M. Kuwagaki, Effect of hydrogen dilution of silane on optoelectronic properties in glow-discharged hydrogenated silicon films, J. Appl. Phys. 58 (1985) 3661–3663.

    Article  CAS  Google Scholar 

  • Shirai, H., D. Das, J. Hanna, and I. Shimizu, A novel preparation technique for preparing hydrogenated amorphous silicon with a more rigid and stable Si network, Appl. Phys. Lett. 59 (1991) 1096–1098

    Article  CAS  Google Scholar 

  • Shirai, H., B. Drévillon, and I. Shimizu, Role of hydrogen plasma during growth of hydrogenated microcrystalline silicon-In situ UV-visible and infrared ellipsometry study, Jpn. J. Appl. Phys. 33 (1994) 5590–5598.

    Article  CAS  Google Scholar 

  • Sterling, H.F. and R.C.G. Swann, Chemical Vapour deposition promoted by r.f discharge, Solid-State Electron. 8 (1965) 653–654.

    Article  CAS  Google Scholar 

  • Tsai, C.C., R. Thompson, C. Doland, F.A. Ponce, G.B. Anderson and B. Wacker, Transition from amorphous to crystalline silicon: effect of hydrogen on film growth, in: Amorphous Silicon Technology, edited by A. Madan, M.J. Thompson, P.C. Taylor, P.G. LeComber, and Y. Hamakawa, Materials Research Society Symp. Proc. 118 (1988) 49–54.

    Google Scholar 

  • Vepřek, S., F.A. Sarrott, S. Rambert, and E. Taglauer, Surface hydrogen content and passivation of silicon deposited by plasma induced chemical vapor deposition from silane and the implications for the reaction mechanism, J. Vac. Sci. Technol. A 7 (1989) 2614–2624.

    Article  Google Scholar 

  • Watanabe, T., M. Tanaka, K. Azuma, M. Nakatani, T. Sonobe, and T. Shimada, Chemical Vapor Deposition of a-SiGe:H films utilizing a microwave excited plasma, Jpn. J. Appl. Phys. 26 (1987) L288–L290.

    Article  CAS  Google Scholar 

  • Wiesmann, H., A.K. Ghosh, T. McMahon, and M. Strongin, J. Appl. Phys. 50 (1979) 3752; H. J. Wiesmann, Method of producing hydrogenated amorphous silicon film, U.S. Patent No. 4,237,150; Dec. 2, 1980.

    Article  CAS  Google Scholar 

  • Xi, J.P., R.E. Hollingsworth, P.K. Bhat, and A. Madan, Deposition rate effects on amorphous silicon solar cell stability, AIP Conf. Proc. 157 (1987) 158–164.

    Article  CAS  Google Scholar 

  • Xu, X., J. Yang, and S. Guha, Hydrogen dilution effects on a-Si:H and a-SiGe:H materials properties and solar cell performance, J. Non-Cryst. Solids 198-200 (1996) 60–64.

    Article  CAS  Google Scholar 

  • Xu, X., J. Jang, and S. Guha, On the lack of correlation between film properties and solar cell performance of amorphous silicon-germanium alloys, Appl. Phys. Lett. 62 (1993) 1399–1401.

    Article  CAS  Google Scholar 

  • Yamamoto, K., Thin film poly-Si solar cell on glass substrate fabricated at low temperature, in: Amorphous and Mierocrystalline Silicon Technology — 1998, edited by R. Schropp, H. Branz, S. Wagner, M. Hack, and I. Shimizu, Materials Research Society Symp. Proc. 507 (1998) in print.

    Google Scholar 

  • Yang, L., L. Chen, and A. Catalano, The effect of hydrogen dilution on the deposition of SiGe alloys and the device stability, in: Amorphous Silicon Technology — 1991, edited by A. Madan, Y. Hamakawa, M.J. Thompson, P.C. Taylor, and P.G. LeComber, Materials Research Society Symp. Proc. 219 (1991) 259–264.

    Google Scholar 

  • Zafar, S., and E.A. Schiff, Hydrogen-mediated model for defect metastability in hydrogenated amorphous silicon, Phys. Rev. B 40 (1989) 5235–5238.

    Article  CAS  Google Scholar 

  • Zedlitz, R., F. Kessler, and M. Heintze, Deposition of a-Si:H with the hot-wire technique, J. Non-Cryst. Solids, 164-166 (1993) 83–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schropp, R.E.I., Zeman, M. (1998). Deposition of Amorphous and Microcrystalline Silicon. In: Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology. Electronic Materials: Science & Technology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5631-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5631-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8317-8

  • Online ISBN: 978-1-4615-5631-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics