Skip to main content

Abstract

There has been much interest in multiple-access fiber optic communications [1], A key motivation for using optics for implementing the multiplexing protocols has been to decrease the processing burden on the electronics that is used typically to discriminate the users in a network. In addition, present-day electronics lacks the speed necessary to utilize fully the large information-carrying bandwidth of the optical fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Special issue on optical multiaccess networks, IEEE Network 3(3) (1989).

    Google Scholar 

  2. P. R. Prucnal, M.A. Santoro, and T.R. Fan, spread spectrum fiber-optic local area network using optical processing, IEEE J. Lightwave Technol. LT-4, 547–554 (1986).

    Article  Google Scholar 

  3. J. Hui, Pattern code modulation and optical decoding: a novel code division multiplexing technique for multifiber networks, IEEE J. Select. Areas Commun. SAC-3, 916–927 (1985).

    Article  Google Scholar 

  4. J. A. Salehi and C.A. Brackett, Fundamental principles of fiber optics code division multiple access (FO-CDMA), Proceeding of the 1987 International Communications Conference (Institute of Electrical and Electronics Engineers, New York, 1987) pp. 1601–1609.

    Google Scholar 

  5. J. A. Salehi, emerging optical code-division multiple access communications systems, IEEE Networks 3(3), 31–39 (1989).

    Article  MathSciNet  Google Scholar 

  6. A.M. Weiner, J.P. Heritage, and J.A. Salehi, Encoding and decoding of femtosecond pulses, Opt. Lett 13, 300–303 (1988).

    Article  Google Scholar 

  7. S. Tamura, S. Nakano, and K. Akazaki, Optical codemultiplex transmission by Gold sequences, IEEE J. Lightwave Technol. LT-3, 121–127 (1985).

    Article  Google Scholar 

  8. M. Azizoglu, J. A. Salehi, and Y. Li, Optical CDMA via temporal codes, IEEE Trans. Commun. 40 1162–1170 (1992).

    Article  MATH  Google Scholar 

  9. P. Prucnal, M. Santoro, S. Sehgal, and I. Kaminow, TDM fiber-optic network with optical processing, Electron. Lett. 22, 1218–1219 (1986).

    Article  Google Scholar 

  10. M. W. Fitzmaurice, the Goddard Space Flight Center Optical Communication Program, in IEEE Lasers and Electro-Optics Society Meeting Technical Digest (Institute of electrical and Electronics Engineers, New York, 1989), paper E04.1, pp.346–353.

    Google Scholar 

  11. See, for instance, D. L. Begley and B.D. Seery, eds., Free-Space Laser Communication Technologies IV, Proc. Soc. Photo-Opt. Instrum. Eng. 1635 (1992).

    Google Scholar 

  12. N. A. Riza, J. E. Hershey, A. A. Hassan, “Novel Multidimensional Coding Scheme for Multi-Access Optical Communications,” Multi-gigabit Fiber Communications, SPIE Proceedings, Vol. 1787, 1992.

    Google Scholar 

  13. N.A. Riza, J. E. Hershey, and A.A. Hassan, A novel multidimensional coding scheme for multiaccess optical communications, in Multigigabit Fiber Communications, L. G. Kazovsky and K. Liu, eds. Proc. Soc. Photo-Opt. Instrum. Eng. 1787 (to be published).

    Google Scholar 

  14. N. A. Riza, J. E. Hershey, A. A. Hassan, “Signaling System for Multiple-Access Laser Communications and Interference Protection,” Applied Optics, Vol. 32, No. 11, pp. 1965–1972, April 1993.

    Article  Google Scholar 

  15. D.E. Castleberry and G.E. Possin, Al mega-pixel color a-SiTFT liquid crystal display, Proc. Soc. Inf. Disp. XX, 232–234 (1988).

    Google Scholar 

  16. For example, the GE 6.25 in. X 6.25 in. (15.9 cm x 15.9 cm) color active-matrix 512 x 512 pixel nematic liquid-crystal display used in the Advanced Tactical Fighter cockpit displays.

    Google Scholar 

  17. P.G. de Gennes, The Physics of Liquid Crystals (Oxford U. Press, New York, 1974).

    Google Scholar 

  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

    Google Scholar 

  19. M. A. Monahan, K. Bromley, and R. P. Bocker, Incoherent optical correlators, Proc. IEEE 65, 121–129 (1977).

    Article  Google Scholar 

  20. I. Glaser, Lenslet array processors, Appl. Opt. 21, 1271–1280 (1982).

    Article  Google Scholar 

  21. A.S. Jackson, A new approach to utilization of optoelectronic technology, presented at the Computation Conference, San Francisco, Calif., February 1974.

    Google Scholar 

  22. F. J. MacWilliams and N.J. Sloane, Pseudo-random sequences and arrays, Proc IEEE 64, 1715–1729 (1976).

    Article  MathSciNet  Google Scholar 

  23. Luke, Sequences and arrays with perfect periodic correlation, IEEE Trans. Aerospace Electron. Syst 24, 287–294 (1988).

    Article  Google Scholar 

  24. J. E. Hershey and R. Yarlagadda, Two dimensional synchronization, electron. Lett 19, 801–803 (1983).

    Google Scholar 

  25. J. M. Wozencraft and I.M. Jacobs, Principles of Communication Engineering (Wiley, New York, 1965).

    Google Scholar 

  26. J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” Chapter 2 in Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, Second enlarged edition, Springer-Verlag, J. C. Dainty, editor 1984.

    Google Scholar 

  27. J. C. Dainty, “Some Statistical Properties of Random Speckle Patterns in Coherent and Partially Coherent Illumination,” Optica Acta, Vol. 17, No. 10, pp. 761–772 1970.

    Article  Google Scholar 

  28. T. S. McKechnie, “Measurement of Some Second Order Statistical Properties of Speckle,” Optik, Vol. 39, No. 3, pp. 258–267 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hassan, A.A., Hershey, J.E., Saulnier, G.J. (1998). Spatial Optical CDMA. In: Perspectives in Spread Spectrum. The Springer International Series in Engineering and Computer Science, vol 459. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5531-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5531-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7528-9

  • Online ISBN: 978-1-4615-5531-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics