Skip to main content

Ischemia-Reperfusion Decreases Protein Levels of InsP3 Receptor and PMCA but not Organellar Ca2+ Pump and Calreticulin in Gerbil Forebrain

  • Chapter
Neurochemistry

Abstract

Intracellular Ca2+ overload, excitotoxic activity of glutamate and concomitant generation of free radicals are thought to play the prominent role as triggering factors in the pathogenesis of brain ischemic-reperfusion injury (IRI) (1). While calcium acts as an important second messenger in the regulation of various neural activities (2), it also acts as an essential mediator of neuronal cell damage in IRI by stimulating of Ca2+ -dependent degradative processes and disaggregation of cytoskeletal components (3). Post-ischemic accumulation of Ca2+ is thought to be responsible for delayed neuronal death of selective regions of hippocampus, but it is not yet clear which sources of Ca2+ and which pathways are involved (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sjesjo, B.K, Katsura, K.I., Zhao, Q.I., Folbergrová, J., Pahlmark, K., Siesjo, P., and Smith, M.L., 1995, J. Neurotrauma 12: 943–956.

    Article  Google Scholar 

  2. Miller, R.J., 1991, Prog.Neurobiol. 37: 255–285.

    Article  PubMed  CAS  Google Scholar 

  3. Henzi, V., and MacDermott, A.B., 1991, Neuroscience 46: 251–273.

    Article  Google Scholar 

  4. Szatkowski, M., and Attwell, D., 1994, TINS 17: 359–365.

    PubMed  CAS  Google Scholar 

  5. Kostyuk, P., and Verkhratsky, A., 1994, Neuroscience 63: 381–404.

    Article  PubMed  CAS  Google Scholar 

  6. Mody, I., and MacDonald, J. F., 1995, TIPS 16: 356–359.

    PubMed  CAS  Google Scholar 

  7. Wu, K.D., Lee, W.S, Wey, J., Bungard, D., and Lytton, J., 1995, Am J. Physiol. 289 (Cell Physiol., 38: C775–C784.

    Google Scholar 

  8. Baba-Aissa, F., Raeymaekers, L., Wuytack, F., Callewaert, G., Dode, L., Missiaen, L., and Casteels, R., 1996, Mol.Brain Res: in press.

    Google Scholar 

  9. Furuichi, T., and Mikoshiba, K., 1995, J. Neurochem. 64: 953–960.

    Article  PubMed  CAS  Google Scholar 

  10. Michalak, M., Milner, R.E., Burns, K., and Opas, M., 1992, Biochem. J, 285: 681–692.

    PubMed  CAS  Google Scholar 

  11. Camacho, P., and Lechleiter, J.D., 1995, Cell 82: 765–771.

    Article  PubMed  CAS  Google Scholar 

  12. Lehotsky, J., 1995, Mol. Chem. Neuropathol. 25: 175–187.

    Article  PubMed  CAS  Google Scholar 

  13. Hillman, D.E., Chen, S., Bing, R., Penniston, J.T., and Llinas, R., 1996, Neuroscience 72: 315–324.

    Article  PubMed  CAS  Google Scholar 

  14. Mironov, S.L., 1995, Neuropharmacology 34: 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  15. Matejovicova, M., Machac, S., Lehotsky, J., Jakus, J., and Mezesova, V., 1996, Mol. Chem.Neuropathol.: in press

    Google Scholar 

  16. Wuytack, F., Eggermont, J.A., Raeymakers, L., Plessers, L., and Casteels, R., 1989, Biochem. J., 264: 765–769.

    PubMed  CAS  Google Scholar 

  17. Wuytack, F., Papp, B., Verboomen, H., Raeymakers, L., Dode, L., Bobe, R., Enouf, J., Bokkala, S., Authi, K.S., and Casteels, R., 1994, J. Biol. Chem. 269: 1410–1416.

    PubMed  CAS  Google Scholar 

  18. Parys, J.B., De Smedt, H., Missiaen, L., Bootman, M.D., Sienaert, I., and Casteels, R., 1995, Cell Calcium 17: 239–249.

    Article  PubMed  CAS  Google Scholar 

  19. Milner, R.E., Baksh, S., Shemako, C., Carpenter, M.R., Smillie, L., Vance, J.E., Opas, M., and Michalak, M., 1991, J. Biol. Chem. 266: 7155–7165.

    PubMed  CAS  Google Scholar 

  20. Edelman, A.M., Hunter, D.D., Hendrickson, A.E., and Krebs, E.G., 1985, J. Neurosci. 10: 2609–2617.

    Google Scholar 

  21. Towbin, H., Staehelin, T., and Gorden, J., 1979, Proc. Natl. Acad. Sci. USA, 76: 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  22. Blaustein, M.P., Goldman, W.F., Fontana, G., Krueger, B.K, Santiago, E.M., Steele, T.D., Weiss, D.N., and Yarowsky, P.J., 1994, Ann. N Y Acad. Sci. 639: 254–274.

    Article  Google Scholar 

  23. Racay, P., Kaplan, P., Raeymakers, L., and Lehotsky, J., 1994, (Abstr.), J. Neurochem. 66: (Suppl.2): 125.

    Google Scholar 

  24. Lin, T.A., Lin, T.N., He, Y.Y., Hsu, C.Y., and Sun, G.Y., 1992, Biochem. Biophys. Res. Commun. 184: 871–877.

    Article  PubMed  CAS  Google Scholar 

  25. Shimazaki, K., Ishida, A., Rhee, S.G., Takenawa, T., and Kawai, N., 1994, NeuroRepori 5: 785–788.

    Article  CAS  Google Scholar 

  26. Zhang, S.X., Zhang, J.P., Fletcher, D.L., Zoeller, R.T., and Sun, G.Y., 1995, Mol. Brain. Res. 32: 252–260.

    Article  PubMed  CAS  Google Scholar 

  27. Araki, T., Kato, H., Hara, H., and Kogure, K., 1992, Neuroscience 46: 973–980.

    Article  PubMed  CAS  Google Scholar 

  28. Nagata, E., Tanaka, K., Gomi, S., Muhara, B., Shirai, T., Nogawa, S., Nozaki, H., Mikoshiba, K., and Fukuuchi, Y., 1994, Neuroscience 61: 983–990.

    Article  PubMed  CAS  Google Scholar 

  29. Oguro, K., Nakamura, M., and Masuzawa, T., 1995, Acta Neuropathol. 90: 454–460.

    Article  Google Scholar 

  30. Sharp, A.H., McPherson, P.S., Dawson, T.M., Aoki, C.H., Campbell, K.P., and Snyder, S.H., 1993, J. Neurosci. 13: 3051–3063.

    PubMed  CAS  Google Scholar 

  31. Llinas, R., Sugimori, M., and Silver, R.B., 1995, Neuropharmacol 34: 1443–1451.

    Article  CAS  Google Scholar 

  32. Burda, J., Gottlieb, M., Vanicky, I., Chavko, M., and Marsala, J., 1994, Mol. Chem. Neuropathol. 25: 189–198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lehotský, J., Kaplan, P., Raçay, P., Raeymaekers, L., Mézešová, V. (1997). Ischemia-Reperfusion Decreases Protein Levels of InsP3 Receptor and PMCA but not Organellar Ca2+ Pump and Calreticulin in Gerbil Forebrain. In: Teelken, A., Korf, J. (eds) Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5405-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5405-9_63

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7468-8

  • Online ISBN: 978-1-4615-5405-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics