Skip to main content

Simultaneous Measurement of Oxygen Consumption and 13C16O2 Production From 13C-Pyruvate in Diabetic Rat Heart Mitochondria

  • Chapter
Oxygen Transport to Tissue XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 428))

Abstract

Several investigators have shown defects in energy production in hearts from animal models of diabetes mellitus (DM). These defects generally involve changes in oxidative phosphorylation (ox-phos) or in Krebs cycle functions. Abnormalities in ox-phos have been observed in heart mitochondria isolated from streptozotocin-diabetic (Pierce and Dhalla, 1985) and alloxan-diabetic (Puckett and Reddy, 1979) models as well as in genetic diabetic models (Kuo et al., 1983). In DM mitochondria, State 3 is decreased when a variety of substrates are used: Pyr plus malate and palmitylcarnitine plus malate (Kuo et al., 1983), a-ketoglutarate (Taegtmeyer et al, 1987), glutamate (Mokhtar et al., 1993), 3-hy-droxybutyrate and malate, and acetoacetate plus malate (Grinblat et al., 1986). The RCI also decreased in mitochondria from DM animals. The ADP/O ratio is depressed only in the early stages of chemically induced DM, returning to normal ranges later on, indicating that mitochondria from DM hearts have normal ability to transfer electrons from NADH to O2 or to couple oxidation to phosphorylation. This suggests that the deficiency of energy production is related to a decrease in substrate oxidation through the Krebs cycle. Two important cellular functions which may contribute to abnormal ox-phos are alterations in mi-tochondrial transporter systems (Kazmi et al., 1985; Paulson et al., 1984) and decrease in substrate supply. One possible mechanism of impaired substrate oxidation in the DM heart is abnormal mitochondrial Ca2+ uptake (Baba and Kako, 1991). It is well known that Ca2+ plays an important role in regulation of several matrix dehydrogenases (including PDH,

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baba A., Kako K. Calcium transport of sarcoplasmic reticulum and mitochondria in situ in heart cells of streptozo-cin-induced diabetic rats. J. Appl. Cardiology, 1991, v.65, p.325–335.

    Google Scholar 

  • Crompton M., Capano M., Carafoli E. The sodium-induced efflux of calcium from heart mitochondria. — Eur. J. Biochem., 1976. v.69, p.453–462.

    Article  CAS  Google Scholar 

  • Friedman M., Ramirez I., Edens N., Granneman J. Food intake in diabetic rats: isolation of primary metabolic effects of fat feeding. Am. J. Physiol., 1985, v. 249, R44–51.

    PubMed  CAS  Google Scholar 

  • Grinblat L., Pacheco Bolanos L., Stoppani A. Decreased rate of ketone body oxidation and decreased activity of D-3-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-oxo-acid CoA-transferase in heart mitochondria of diabetic rats. Biochem. J., 1986, v. 240, p.49–56.

    PubMed  CAS  Google Scholar 

  • Kazmi S., Mayanil C., Baquer N. Malate-aspartate shuttle enzymes in rat brain regions, liver and heart during al-loxan diabetes and insulin replacement. Enzyme, 1985, v.34, p.98.

    PubMed  CAS  Google Scholar 

  • Kerbey A., Randle p., Cooper R., Whitehouse S., Pask H., Denton R. Regulation of pyruvate dehydrogenase in rat heart. Biochem. J., 1976, v.154, p.327–348.

    PubMed  CAS  Google Scholar 

  • Kondrashova M., Gogvadze V., Medvedev B., Babsky A. Succinic acid oxidationas only energy support of intensive Ca++ uptake by mitochondria. BBRC 1982. v.109, no 2.,p.376–381

    PubMed  CAS  Google Scholar 

  • Kondrashova M., Doliba N. Polarographic observation of substrate-level phosphorylation and its stimulation by acetylcholine. FEBS Letters, 1989, v. 243, p. 153–155.

    Article  PubMed  CAS  Google Scholar 

  • Kuo T., Moore K., Giacomelli F., Weiner J. Defective oxidative metabolism of heart mitochondria from genetically diabetic mice. Diabetes, 1983, v. 32, p. 781.

    Article  PubMed  CAS  Google Scholar 

  • Kuo T., Giacomelli F., Wiener J. Oxidative metabolism of Polytron versus Magarse mitochondria in hearts of genetically diabetic mice. Bioch. Bioph. Acta, 1985, v. 806, p.9–15.

    Article  CAS  Google Scholar 

  • Linn T., Pettit F., Hucho F., Reed L. Ketoacid dehydrogenase complexes. Proc.Natl.Acad.Sci.USA 1969, v 64, p.227–234.

    Article  PubMed  CAS  Google Scholar 

  • McCormack J., Halestrap A., Denton R. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev., 1990, v.70, 391–425.

    PubMed  CAS  Google Scholar 

  • Minezaki K.K., Suleiman M.-S., Chapman R.A. Changes in mitochondrial function induced in isolated guinea-pig ventricular myocytes by calcium overload. J. Physiol., 1994, v.476, p.459–471.

    PubMed  CAS  Google Scholar 

  • Mokhtar N., Lavoie J., Roussean-Migneron S., Nadean A. Physical training reverses defect in mitochondrial energy production in heart of chronically diabetic rats. — Diabetes, 1993, v. 42, p. 682–687.

    Article  PubMed  CAS  Google Scholar 

  • Paulson D., Schmidt M., Traxler J., Ramacci M., Shug A. Improvement of myocardial function in diabetic rats after treatment with L-carnitine. Metabolism, 1984, v. 33, p. 358.

    Article  PubMed  CAS  Google Scholar 

  • Pierce G., Dhalla N. Heart mitochondrial function in chronic experimental diabetes in rats. Can.J.Cardiol., 1985, #1, p.48.

    Google Scholar 

  • Puckett S., Reddy W. A decrease in the malate-aspartate shuttle and glutamate translocase activity in heart mitochondria from alloxan-diabetic rats. J. Mol. Cell. Cardiol., 1979, #11, p. 173.

    Article  Google Scholar 

  • Taegtmeyer H., Zirafi C., Nguyen B. Function and metabolism of the heart in diabetes. A fresh look at an old problem. J. Appl. Cardiol., 1987, v.2, #1, p.37–48.

    CAS  Google Scholar 

  • Wieland O. The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev.Physiol.Bio-chem.Pharmacol., 1983, v. 96, p. 123–170.

    Article  CAS  Google Scholar 

  • Zorov D.B., Hansford R.G. Altered dynamics of intramitochondrial calcium in cardiac myocytes from diabetic rats. Biophys.J., 1995, v. 68. #2, abstracts, W-Pos373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doliba, N.M., Sweet, I.R., Babsky, A., Doliba, N., Forster, R.E., Osbakken, M. (1997). Simultaneous Measurement of Oxygen Consumption and 13C16O2 Production From 13C-Pyruvate in Diabetic Rat Heart Mitochondria. In: Harrison, D.K., Delpy, D.T. (eds) Oxygen Transport to Tissue XIX. Advances in Experimental Medicine and Biology, vol 428. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5399-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5399-1_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7465-7

  • Online ISBN: 978-1-4615-5399-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics