Skip to main content

Measurement of Absolute Cerebral Haemoglobin Concentration in Adults and Neonates

  • Chapter
Oxygen Transport to Tissue XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 428))

Abstract

The concentration and saturation of the main oxygen carrier of the blood—the haemoglobin—may be an important clinical factor to judge the oxygenation of tissue. The brain is very sensitive to under-oxygenation. So far, the measurement of absolute cerebral haemoglobin concentration by near infrared spectrophotometry (NIRS) has not taken into account the contribution of skull and skin, which causes an underestimation by a factor of 3 [Owen-Reece, 1996] in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brun NC and Greisen G. Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures. Pediatr Res, 1994, 36, 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Ciba-Geigy. Wissenschaftliche Tabellen: Physikalische Chemie-Blut-Humangenetik. Ciba-Geigy, Basel 1979.

    Google Scholar 

  • De Blasi RA, Fantini S, Franceschini MA, Ferrari M and Gratton E. Cerebral and muscle oxygen saturation measurement by frequency domain near-infrared spectrometer. Med Biol Eng Comput, 1995, 33, 228–230.

    Article  PubMed  Google Scholar 

  • Delpy DT, Cope M, van der Zee P, Arridge S, Wray S and Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurements. Phys Med Biol, 1988, 33, 1422–1433.

    Article  Google Scholar 

  • Draper NR and Smith H. Applied regression analysis. J. Wiley LTD New York, 1981.

    Google Scholar 

  • Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT and Reynolds EOR. Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J Appl Physiol, 1994, 77, 2753–2760.

    PubMed  CAS  Google Scholar 

  • Essenpreis M, Cope M, Elwell CE, Arridge SR, van der Zee P and Delpy DT. Wavelength dependence of the differential pathlength factor and the log slope in time resolved tissue spectroscopy. In “Optical Imaging of Brain Function and Metabolism”, 1993, Plenum Press, New York.

    Google Scholar 

  • Greenberg JH, Alavi A, Reivich M, Kuhl D and Uzzell B. Local cerebral blood volume response to carbon dioxide in man. Circ Res, 1978, 43, 324–331.

    Article  PubMed  CAS  Google Scholar 

  • Grubb RL, Phelps ME and Ter-Pogossian MM. Regional cerebral blood volume in humans. Arch Neurol, 1973, 28, 38–44.

    Article  PubMed  Google Scholar 

  • Grubb RL, Jr., Raichle ME, Higgins CS and Eichling JO. Measurement of regional blood volume by emission tomography. Ann Neurol 1978, 4, 322–328.

    Article  PubMed  Google Scholar 

  • Keele CA and Neil E. Samson Wright’s Applied Physiology. 12th edition 1971, University Press, London.

    Google Scholar 

  • Lammertsma AA, Brooks DJ, Beaney RP et al. In vivo measurement of regional cerebral haematocrit using positron emission tomography. J Cereb Blood Flow Metab, 1988, 4, 317–322.

    Article  Google Scholar 

  • Levy WJ, Levin S and Chance B. Near-infrared measurement of cerebral oxygenation. Correlation with electroencephalic ischaemia during ventricular fibrillation. Anesthesiology, 1995, 83, 738–746.

    Article  PubMed  CAS  Google Scholar 

  • Nelson SR, Mantz ML, and Maxwell JA. Use of specific gravity in the measurement of cerebral edema. J Appl Physiol, 1971, 30, 268–271.

    PubMed  CAS  Google Scholar 

  • Owen-Reece H, Elwell CE, Harkness W, Goldstone J, Delpy DT, Wyatt JS and Smith M. Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects. Br J Anaesthesia, 1996, 76, 43–48.

    Article  CAS  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ and Kuhl DE. Validation of tomographic measurement of cerebral blood volume with C-l 1-labled carboxyhemoglobin. J Nucl Med, 1979, 20, 328–334.

    PubMed  CAS  Google Scholar 

  • Rempp KA, Brix G, Wenz F, Becker CR, Guckel F and Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast enhanced MR imaging. Radiology, 1994, 193, 637–641.

    PubMed  CAS  Google Scholar 

  • Sakai F, Nakzawa K, Tazaki Y, Ishii K, Hino H, Igarashi H and Kanda T. Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab, 1985, 5, 207–13

    Article  PubMed  CAS  Google Scholar 

  • Schindler E, Zickmann B, MĂĽller M, Boldt J, Kroll J and Hempelmann G. Zerebrale Oxymetrie durch Infrarot Spektroskopie im Vergleich zur kontinuierlich gemessenen Sauerstoffsaettigung im Bulbus Vena Jugularis bei Eingriffen an der Arteria Carotis interna. Vasa, 1995, 24, 168–175.

    PubMed  CAS  Google Scholar 

  • Steiger HJ, Aaslid R and Stooss R. Dynamic computed tomographic imaging of regional cerebral blood flow and blood volume. A clinical pilot study. Stroke, 1993, 24, 591–597.

    Article  PubMed  CAS  Google Scholar 

  • Thorniley MS, Lane NJ, Manek S and Green CJ. Non-invasive measurement of respiratory chain disfunction following hypothermic renal storage and transplantation. Kidney International, 1994, 45, 1489–1496.

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Bucher H, Dietz V, Keel M, von Siebenthal K, Duc G. How to evaluate slow oxygenation changes to estimate absolute cerebral haemoglobin concentration by near infrared spectrophotometry in neonates. Adv Exp Med Biol, in press.

    Google Scholar 

  • Wyatt JS, Cope M, Delpy DT, Richardson CE, Edwards AD, Wray S and Reynolds EO. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol, 1990, 68,1086–1091.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolf, M. et al. (1997). Measurement of Absolute Cerebral Haemoglobin Concentration in Adults and Neonates. In: Harrison, D.K., Delpy, D.T. (eds) Oxygen Transport to Tissue XIX. Advances in Experimental Medicine and Biology, vol 428. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5399-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5399-1_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7465-7

  • Online ISBN: 978-1-4615-5399-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics