Skip to main content

Response of Purine Metabolism and Cortical Oxygen Pressure to Hypoxia and Reoxygenation in Newborn Piglets

  • Chapter
Oxygen Transport to Tissue XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 428))

  • 275 Accesses

Abstract

It has been proposed that the level of purine metabolites (particularly hypoxanthine) reflects the intracellular energy metabolism and can be used as sensitive, specific markers of response of tissue to hypoxic/ischemic conditions.26,27 Several studies have shown that hypoxic conditions cause breakdown of cellular nucleotides resulting in accumulation of hypoxanthine and xanthine4,7,8,28 and these metabolites can serve as oxidizable purine sub-strates for xanthine dehydrogenase and oxidase. One of the possible mechanisms of tissue damage during reoxygenation following hypoxic/ischemic conditions is through genera-tion of free radicals by the hypoxanthine-xanthine oxidase reactions.1,5,615,16,24,29 Under hy-poxic/ischemic conditions the elevated cytosolic calcium concentration can activate a protease, calpain, which converts xanthine dehydrogenase to xanthine oxidase.32 During posthypoxic reoxygenation xanthine oxidase catalyzes oxidation of xanthine to uric acid with formation of Superoxide radical O2 4,15,28. The Superoxide radical can further react with hydrogen peroxide produced in the same reaction and form hydroxyl radicals. Contribution of toxic oxygen metabolites from xanthine oxidase to tissue injury during reoxy-genation has been based particularly on studies showing that the inhibitors of xanthine oxidase, such as allopurinol, decrease the postischemic injury of different tissues.9,19,20,21,24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunwald E. and Lonar R.A. (1985) Myocardial reperfusion. A double edged sword? J Clin Invest 16, 1713–1720.

    Article  Google Scholar 

  2. Cornford E.M. and Oldendorf W.H. (1975) Independent blood brain barrier transport systems for nucleic acid precursors. Biochem Biophys Acta 394, 211–216.

    Article  PubMed  CAS  Google Scholar 

  3. Engerson T.D., McKelvey G., Rhyne D.B., Boggio E.B., Synder S.J. and Jones H.P. (1987) Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J Clin Invest 79, 1564–1570.

    Article  PubMed  CAS  Google Scholar 

  4. Floyd R.A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4, 2587–2597.

    PubMed  CAS  Google Scholar 

  5. Fridovich I. (1970) Quantitative aspects of the production of Superoxide anion radical milk xanthine oxi-dase. J Biol Chem 245, 4053–4057.

    PubMed  CAS  Google Scholar 

  6. Fredholm B.B. and Hedquist P. (1980) Modulation of neurotransmission by purine nucleotides and nucleo-sides. Biochem Pharmacol 29, 1635–1643.

    Article  PubMed  CAS  Google Scholar 

  7. Harkness R.A. (1988) Hypoxanthine, xanthine and uridine in body fluids, indicators of ATP depletion. J Chromatogr 429, 255–278.

    Article  PubMed  CAS  Google Scholar 

  8. Harkness R.A. and Lund R.J. (1983) Cerebrospinal fluid concentrations of hypoxanthine, xanthine, uridine and inosine: high concentrations of the ATP metabolite hypoxanthine after hypoxia. J Clin Pathol 36, 1–8.

    Article  PubMed  CAS  Google Scholar 

  9. Hearse D.J., Manning A.S., Downey J.M. and Yellon D.M. (1986) Xanthine oxidase: critical mediator of myocardial injury during ischemia and reperfusion. Acta Physiol Scand 548, 65–78.

    CAS  Google Scholar 

  10. Huang, Ch-Ch., Lajevadi, N.S., Tammela, O., Pastuszko, A., Delivoria-Papadopoulos, M., and Wilson, D.F. (1994) Relationship of extracellular dopamine in striatum of newborn piglets to cortical oxygen pressure.Neurochemical Research, 19, 640–655.

    Google Scholar 

  11. Jones C.E., Crowell J.W. and Smith E.E. (1968) Significance of increased blood uric acid following exten-sive hemorrhage. Am J Physiol 124, 1374–1377.

    Google Scholar 

  12. Kinuta Y., Kimura M., Itokawa Y, Ishikawa M. and Kikuchi. H. (1989) Changes in xanthine oxidase in is-chemic rat brain. J Neurosurg 71, 417–420.

    Article  PubMed  CAS  Google Scholar 

  13. Laptook A. and Stonestreet B.S. (1982) The effects of different rates of plamanate infusion upon brain blood flow after asphyxia and hypotension in newborn piglets. J Pediatr 100, 791–796.

    Article  PubMed  CAS  Google Scholar 

  14. Liang C.M., Liu Y.P. and Chabner B.A. (1980) Modes of action of hypoxanthine, inosine and inosine 5-mo-nophosphate from bovine brain. Biochem Pharmacol 29, 277–282.

    Article  PubMed  CAS  Google Scholar 

  15. McCord J.M. (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312, 159–163.

    Article  PubMed  CAS  Google Scholar 

  16. McCord J.M. and Fridovich I. (1968) The reduction of cytochrome C by milk xanthine oxidase. J Biol Chem 243, 553–560.

    Google Scholar 

  17. Meberg A. and Saugstad O.D. (1978) Hypoxanthine in cerebrospinal fluid in children. Scand J Clin Lab In-vest 38, 437–440.

    Article  CAS  Google Scholar 

  18. Niklasson F., Agren H. and Hallgren R. (1983) Purine and monoamine metabolites in cerebrospinal fluid: parallel purinergic and monoaminergic activation in depressive illness? J Neurol Neurosurg Psychiatry 46, 255–260.

    Article  PubMed  CAS  Google Scholar 

  19. Parks D.A., Bulkley G.B. and Granger D.N. (1983) Role of oxygen derived free radicals in digestive tract diseases. Surgery 94, 415–421.

    PubMed  CAS  Google Scholar 

  20. Parks D.A., Bulkley G.B., Granger D.N., Hamilton S.R. and McCord J.M. (1982) Ischemic injury in the cat small intestine: role of Superoxide radicals. Gastroenterology 2, 9–15.

    Google Scholar 

  21. Parks D.A. and Granger D.N. (1986) Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand 548, 87–99.

    CAS  Google Scholar 

  22. Pastuszko A. (1994) Metabolic response of dopaminergic system during hypoxia-ischemia and reoxygena-tion in the immature brain. Biochem. Med. and Metabolic Biology. 51, 1–15.

    Article  CAS  Google Scholar 

  23. Pastuszko, A., Lajevardi, N.S., Chen, J., Tammela, O., Wilson, D.F., and Delivoria-Papadopoulos, M. (1993) The effects of graded levels of tissue oxygen pressure on dopamine metabolism in the striatum of newborn piglets. J. Neurochem. 60, 161–166.

    Article  PubMed  CAS  Google Scholar 

  24. Patt A., Harken A.H., Burton L.K., Rodell T.C., Piermattei D., Schorr W.J., Parker N.B., Berger E.M., Ho-resh L.S., Terada L.S., Linas, S.L., Cheronis J.C. and Repine J.E. (1988) Xanthine oxidase-derived hydro-gen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J Clinic Invest 81, 1556–1562.

    Article  CAS  Google Scholar 

  25. Rootwelt T., Oyasaeter S. and Saugstad O.D. (1993) Transport of hypoxanthine from plasma to cerebrospi-nal fluid and vitreous humor in newborn piglets. J Perinat Med 21,211–217.

    Article  PubMed  CAS  Google Scholar 

  26. Saugstad O.D. (1975) Hypoxanthine as a measurement of hypoxia. Pediatric Res 9, 158–160.

    Article  CAS  Google Scholar 

  27. Saugstad O.D. (1983) Hypoxanthine and the diagnosis of hypoxia. Ups J Med Sci 38, 29–33.

    Google Scholar 

  28. Saugstad O.D. (1988) Hypoxanthine as a indicator of hypoxia: Its role in health and disease through free radical production. Pediatric Res 23, 143–150.

    Article  CAS  Google Scholar 

  29. Saugstad O.D. and Aasen A.O. (1980) Plasma hypoxanthine levels as a prognostic aid of tissue hypoxia. Eur Surg Res 12, 123–129.

    Article  PubMed  CAS  Google Scholar 

  30. Saugstad O.D., Aasen A.O. and Hetland O. (1978) Plasma hypoxanthine concentrations as an indicator of tissue hypoxia in pigs. Eur Surg Res 10, 314–322.

    Article  PubMed  CAS  Google Scholar 

  31. Skolnick P., Marangos P.J., Goodwin F.K., Edwards M. and Paul S. (1978) Identification of inosine and hy-poxanthine as endogenous inhibitors of (3H) diazepam binding in the central nervous system. Life Sei 23, 1473–1480.

    Article  CAS  Google Scholar 

  32. Stark K., Seubert P., Lynch G. and Baudry M. (1989) Proteolytic conversion of xanthine dehydrogenase to xanthine oxidase: Evidence against a role for calcium activated protease (calpalin). Biochem Biophys Res Comm 165, 858–864.

    Article  PubMed  CAS  Google Scholar 

  33. Thiringer K., Blomstrand S., Hrbek A., Karlsson K. and Kjellmer I. (1982) Cerebral arterio-venous differ-ence for hypoxanthine and lactate during graded asphyxia in the fetal lamb. Brain Res 239, 107–117.

    Article  PubMed  CAS  Google Scholar 

  34. Thiringer K., Saugstad O.D. and Kjellmer I. (1980) Hypoxanthine as a measure of tissue hypoxia in acutelyexteriorized fetal lamb. Pediatrie Res. 14, 905–909.

    Article  CAS  Google Scholar 

  35. Wilson D.F., Rumsey W.L., Green T.J. and Vanderkooi J.M. (1988) The oxygen dependence of mitochon-drial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J BiolChem 263, 2712–2718.

    CAS  Google Scholar 

  36. Wilson D.F., Pastuszko A., DiGiacomo J.E., Pawlowski M, Schneiderman R. and Delivoria-Papadopoulos M. (1992) Effect of hyperventilation on oxygenation of the brain cortex of newborn piglets. J App Physiol 70,2691–2696.

    Google Scholar 

  37. Zhong Z., Lemasters J.J. and Thurman R.G. (1989) Role of purines and xanthine oxidase in reperfusion in-jury in perfused rat liver. J Pharmacol Exp Ther 250, 470–475.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pastuszko, P., Marro, P., Delivoria-Papadopoulos, M., Wilson, D.F. (1997). Response of Purine Metabolism and Cortical Oxygen Pressure to Hypoxia and Reoxygenation in Newborn Piglets. In: Harrison, D.K., Delpy, D.T. (eds) Oxygen Transport to Tissue XIX. Advances in Experimental Medicine and Biology, vol 428. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5399-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5399-1_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7465-7

  • Online ISBN: 978-1-4615-5399-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics