Skip to main content

Non-Universal Soft Susy Breaking, Susy Wimps and Dark Matter

  • Chapter
High-Energy Physics and Cosmology
  • 104 Accesses

Abstract

Non-universalities of soft SUSY breaking parameters in the Higgs sector and in the third generation squark sector are discussed. It is found that these non-universalities are strongly coupled at the electroweak scale. Neutralino dark matter relic density and event rates in neutralino nucleus scattering are analysed with the inclusion of these non-universalities. It is found that there exist interesting signatures for the non-universalities specifically in the neutralino mass range \({m_{\tilde x1}} \leq\) 65 GeV. An analysis is also given of the effect of more accurate determinations of Ωh 2 on SUSY dark matter. Such determinations are expected in the next generation of satellite experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review see, G. Jungman, M. Kamionkowski and K. Greist, Phys. Rep. 267, 195 (1995).

    Article  ADS  Google Scholar 

  2. An exception is the analysis by V. Berezinsky, A. Bottino, J. Ellis, N. Forrengo, G. Mignola, and S. Scopel, Astropart. Phys. 5:1–26 (1996), where non-universalities of soft SUSY breaking were considered.

    Article  ADS  Google Scholar 

  3. A.H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 29, 970 (1982). For reviews see P. Nath, R. Arnowitt and A.H. Chamseddine, “Applied N = 1 Supergravity” (World Scientific, Singapore, 1984); H.P. Nilles, Phys. Rep. 110, 1 (1984); R. Arnowitt and P. Nath, Proc. of VII J.A. Swieca Summer School ed. E. Eboli (World Scientific, Singapore, 1994).

    Article  ADS  Google Scholar 

  4. R. Barbieri, S. Ferrara, and Savoy, Phys. Lett. B119, 343 (1982); L. Hall, J. Lykken and S. Weinberg, Phys. Rev. D27, 2359 (1983); P. Nath, R. Arnowitt and A.H. Chamseddine, Nucl. Phys. B227, 121 (1983).

    ADS  Google Scholar 

  5. S.K. Soni and H.A. Weldon, Phys. Lett. B126, 215 (1983); V.S. Kaplunovsky and J. Louis, Phys. Lett. B306, 268 (1993).

    ADS  Google Scholar 

  6. D. Matalliotakis and H.P. Nilles, Nucl.Phys. B435, 115 (1995); M. Olechowski and S. Pokorski, Phys.Lett. B344, 201 (1995); N. Polonski and A. Pomarol, Phys.Rev.D51, 6532 (1995).

    Article  ADS  Google Scholar 

  7. P. Nath and R. Arnowitt, hep-ph/9701301.

    Google Scholar 

  8. L. Ibanez, C. Lopez, and C. Munos, Nucl. Phys. B256, 218 (1985).

    Article  ADS  Google Scholar 

  9. S. Martin and P. Ramond, Phys. Rev. D48, 5365 (1993).

    ADS  Google Scholar 

  10. P. Nath, J. Wu and R. Arnowitt, Phys.Rev. D52, 4169 (1995).

    ADS  Google Scholar 

  11. For a review see E.W. Kolb and M.S. Turner, “The Early Universe” (Addison-Wesley, Redwood City, 1989).

    Google Scholar 

  12. K. Greist and D. Seckel, Phys. Rev. D43, 3191 (1991); P. Gondolo and G. Gelmini, Nucl. Phys. B360, 145 (1991).

    ADS  Google Scholar 

  13. R. Arnowitt and P. Nath, Phys. Lett. B299, 58 (1993); B303, 403 (1993) (E); P. Nath and R. Arnowitt, Phys. Rev. Lett. 70, 3696 (1993); H. Baer and M. Brhlick, Phys.Rev. D53, 597 (1996).

    ADS  Google Scholar 

  14. M.S. Alam et al. (CLEO Collaboration), Phys. Rev. Lett. 74, 2885 (1995).

    Article  ADS  Google Scholar 

  15. K. Chetyrkin, M. Misiak, and M. Munz, hep-ph/9612313.

    Google Scholar 

  16. R. Arnowitt and P. Nath, Mod. Phys. Lett. A 10, 1257 (1995); P. Nath and R. Arnowitt, Phys. Rev. Lett.74, 4592 (1995); R. Arnowitt and P. Nath, Phys. Rev. D54, 2374 (1996).

    ADS  Google Scholar 

  17. R. Bernabei, et.al., Phys. Lett. B389, 757 (1996); P. F. Smith et. al., Phys. Lett. 379, 299 (1996).

    ADS  Google Scholar 

  18. D. Cline. “On a Discriminatory Liquid Xenon SUSY Wimp Detector”, Nucl. Phys. B (in press); P. Benetti et al, Nucl. Inst, and Method for Particle Physics Research, A307, 203 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nath, P., Arnowitt, R. (1997). Non-Universal Soft Susy Breaking, Susy Wimps and Dark Matter. In: Kursunoglu, B.N., Mintz, S.L., Perlmutter, A. (eds) High-Energy Physics and Cosmology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5397-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5397-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7464-0

  • Online ISBN: 978-1-4615-5397-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics