Skip to main content

Anyonic Behavior of Quantum Group Fermionic and Bosonic Systems

  • Chapter
High-Energy Physics and Cosmology
  • 105 Accesses

Abstract

The role of quantum groups and quantum Lie algebras [1] in physics has its origin in the theory of vertex models [2] and the quantum inverse scattering method [3]. Prom the mathematical point of view, two of the most important developments have been their understanding in terms of the theory of noncommutative Hopf algebras [4] and their relation to non-commutative geometry [5, 6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example M. Jimbo, ed., Advanced Series in Mathematical Physics, Vol. 10 Yang-Baxter equation in integrable systems, (World Scientific, Singapore, 1990).

    Google Scholar 

  2. H. Saleur and J.-B. Zuber, Integrable lattice models and quantum groups, in: Proceedings of the Trieste Spring School String Theory and Quantum Gravity, eds. M. Green, R. Iengo, S. Randjbar-Daemi, E. Sezgin and H. Verlinde, (World Scientific, Singapore, 1992) and references therein.

    Google Scholar 

  3. L. Fadeev, Integrable models in (1+1)-dimensional quantum field theory in Recent Advances in Field Theory and Statistical Mechanics, Les Houches 1982, eds. J.-B. Zuber and R. Stora, (North Holland 1984).

    Google Scholar 

  4. V. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl 32:254 (1985).

    Google Scholar 

  5. S. L. Woronowicz, Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. RIMS 23:117 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  6. Yu. I. Manin, Multiparametric quantum deformation of the general linear supergroup, Comm. Math. Phys. 123:163 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane, Nucl. Phys. B18 (Proc. Suppl.):302 (1990).

    MathSciNet  Google Scholar 

  8. M. R. Ubriaco, Quantum deformations of quantum mechanics, Mod. Phys. Lett. A8:89 (1993); and references therein.

    MathSciNet  ADS  Google Scholar 

  9. M. R. Ubriaco, Complex q analysis and scalar field theory on a q lattice, Mod. Phys. Lett. A9:1121 (1994); and references therein.

    MathSciNet  ADS  Google Scholar 

  10. A. Sudbery, SU q(n) gauge theory, Phys. Lett. B375:75 (1996).

    MathSciNet  ADS  Google Scholar 

  11. S. Vokos, B. Zumino and J. Wess, Properties of quantum 2×2 matrices, in: Symmetry in Nature, Scuola Normale Superiore Pubi., Pisa (1989).

    Google Scholar 

  12. M. R. Ubriaco, Quantum group Schrödinger field theory, Mod. Phys. Lett. A8:2213 (1993); A10:2223(E) (1995).

    MathSciNet  ADS  Google Scholar 

  13. L. A. Takhatajan, Quantum groups and integrable models, Adv. Stud. Pure Math. 19:1 (1989).

    Google Scholar 

  14. Y.J. Ng, Comment on the q-analogues of the harmonic oscillator, J. Phys. A:23, 1203 (1990).

    Google Scholar 

  15. A. J. Macfarlane, On q-analogues of the quantum harmonic oscillator and the quantum group SU q(2), J. Phys. A22:4581 (1989).

    MathSciNet  ADS  Google Scholar 

  16. L. C. Biedenharn, The quantum group SU q(2) and a q-analog of the boson operators, J. Phys. A22:873 (1989).

    MathSciNet  ADS  Google Scholar 

  17. M. R. Ubriaco, High and low temperature behavior of a quantum group fermion gas, Mod. Phys. Lett. A11:2325 (1996).

    MathSciNet  ADS  Google Scholar 

  18. M. R. Ubriaco, Anyonic behavior of quantum group gases, Phys. Rev E55:291 (1997).

    MathSciNet  ADS  Google Scholar 

  19. D. Arovas, Topics in fractional statistics, in: Geometric Phases in Physics, A. Shapere and F. Wilczek, ed., (World Scientific, Singapore, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ubriaco, M.R. (1997). Anyonic Behavior of Quantum Group Fermionic and Bosonic Systems. In: Kursunoglu, B.N., Mintz, S.L., Perlmutter, A. (eds) High-Energy Physics and Cosmology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5397-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5397-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7464-0

  • Online ISBN: 978-1-4615-5397-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics