Skip to main content

Monitoring the Population Dynamics of Biodegradable Consortia During Bioremediation

  • Chapter
  • 351 Accesses

Part of the book series: Environmental Science Research ((ESRH,volume 54))

Abstract

The use of bioremediation technology has gained widespread popularity as an efficient, cost-effective means of cleaning up contaminated sites (Bouwer, 1992; Forsyth et al., 1995). Bioremediation relies on indigenous microorganisms present at a site to transform the polluting compound to a non-toxic form. It is, therefore, imperative during the designing and testing of a bioremediation process to distinguish between abiotic chemical reactions and microbial processes. Only by demonstrating that there is a potential for microbial transformation of the contaminating chemical, as well as that biodegradation is occurring in situ, can one have confidence that bioremediation is occurring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atlas, R.M., and Bartha, R., 1987. Microbial Ecology: Fundamentals and Applications, 2nd ed., Benjamin/Cummings Publishing Company, Inc., Menlo Park, pp. 195–232.

    Google Scholar 

  • Bej, A.K., and Mahbubani, M.H., 1994. Applications of the polymerase chain reaction (PCR) in vitro DNA-amplification method in environmental microbiology, in: PCR Technology: Current Innovations (H.G. Griffin, and A.M. Griffin, eds.), CRC Press, Boca Raton, pp.327-339.

    Google Scholar 

  • Bouwer, E.J., 1992. Bioremediation of organic contaminants in the subsurface, in: Environmental Microbiology (R. Mitchell, ed.), Wiley-Liss Inc., New York, pp.287-318.

    Google Scholar 

  • Boyle, M., 1992. The importance of genetic exchange in degradation of xenobiotic chemicals, in: Environmental Microbiology (R. Mitchell, ed.), Wiley-Liss Inc., New York, pp. 319–333.

    Google Scholar 

  • Fani, R., Damiani, G., Di Serio, C., Gallon, E., Grifoni, A, and Bazzicalupo, M., 1993. Use of random amplified polymorphic DNA probes for microorganisms, Molecular Ecology 2: 243–250.

    Article  CAS  Google Scholar 

  • Farrelly, V., Rainey, F.A., and Stackebrandt, E., 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species, Appl. Environ. Microbiol. 61: 2798–2801.

    CAS  Google Scholar 

  • Fedorak, P.M., Foght, J.M., and Westlake, W.S., 1982. A method for monitoring mineralization of 14 C-labeled compounds in aqueous samples, Water Res. 16: 1285–1290.

    Article  CAS  Google Scholar 

  • Ferris, M.J., Muyzer, G., and Ward, D.M., 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community, Appl. Environ. Microbiol. 62: 340–346.

    CAS  Google Scholar 

  • Fischer, S.G., and Lerman, L.S., 1979. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis, Cell. 16: 191–200.

    Article  CAS  Google Scholar 

  • Fischer, S.G., and Lerman, L.S., 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: Correspondence with melting theory, Proc. Natl. Acad. Sci. USA, 80: 1579–1583.

    Article  CAS  Google Scholar 

  • Forsyth, J.V., Tsao, Y.M., and Bleam, R.D., 1995. Bioremediation: When is augmentation needed?, in: Bioaugmentation for Site Remediation (R.E. Hinchee, J. Fredrickson and B.C. Alleman, eds.), Battelle Press, Columbus, pp. 1–14.

    Google Scholar 

  • Funk, S.B., Crawford, D.L., and Crawford, R.L., 1995. Bioremediation of nitroaromatic explosives contaminated soils and waters, in: Bioremediation: Principles and Applications (R.L. Crawford and D.L. Crawford, eds.), in press.

    Google Scholar 

  • Funk, S.B., Roberts, D.J., Crawford, D.L., and Crawford, R.L., 1993. Initial-phase optimization for bioremediation of munition compound-contaminated soils, Appl. Environ. Microbiol. 59: 2173–2177.

    Google Scholar 

  • Giovannoni, S.J., DeLong, E.F., Olsen, G.J., and Pace, N.R., 1988. Phylogenetic group-specific oligonucleotide probes for identification of single microbial cells, J. Bacteriol. 170: 720–726.

    CAS  Google Scholar 

  • Gorontzy, T., Kuver, J., and Blotevogel, K-H., 1993. Microbial transformation of nitroaromatic compounds under anaerobic conditions, J. Gen. Microbiol. 139: 1331–1336.

    Article  CAS  Google Scholar 

  • Hadrys, H., Balick, M., and Schierwater, B., 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology, Molecular Ecology 1: 55–63.

    Article  CAS  Google Scholar 

  • Holben, L.E., Jansson, J.K., Chelm, B.K., and Tiedje, J.M., 1988. DNA probe method for the detection of specific microorganisms in the soil bacterial community, Appl. Environ. Microbiol. 54: 703–711.

    CAS  Google Scholar 

  • Kaplan, L.A., Bott, T.L., and Bielick, J.K., 1992. Assessment of [3]H]thymidine incorporation into DNA as a method to determine bacterial productivity in stream bed sediments, Appl. Environ. Microbiol. 58: 3614–36

    CAS  Google Scholar 

  • Karns, J.S., Kilbane, J.J., Catterjee, D.K., and Chakrabarty, A.M., 1984. Microbial biodegradation of 2,4,5-trichlo-rophenoxyacetic acid and chlorophenols, in: Genetic Control of Environmental Pollutants. Basic Life Sciences, Volume 28 (G.S. Omenn, and A. Hollaender, eds.), Plenum Press, New York, pp. 3–21.

    Chapter  Google Scholar 

  • Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., and Pace, N.R., 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc. Natl. Acad. Sci. USA 82: 6955–6959.

    Article  CAS  Google Scholar 

  • Lappin, H.M., Greaves, M.P., and Slater, J.H, 1985. Degradation of the herbicide Mecoprop [2-(2-methyl-4-chlo-rophenoxy)propionic acid] by a synergistic microbial community, Appl. Environ. Microbiol. 49: 429–433.

    CAS  Google Scholar 

  • Lerman, L.S., Fischer, S.G., Hurley, I., Silverstein, K., and Lumelsky, N., 1984. Sequence-determined DNA separations, Ann. Rev. Biophys. Bioeng. 13: 399–423.

    Article  CAS  Google Scholar 

  • Liesack, W., Weyland, H., and Stackebrandt, E., 1991. Potential risks of gene amplification by PCR as determined by 16S rDN A analysis of a mixed-culture of strict barophilic bacteria, Microb. Ecol. 21: 191–198.

    Article  CAS  Google Scholar 

  • Muyzer, G., Teske, A., Wirsen, CO., and Jannasch, H.W., 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electropho-resis of 16S rDN A fragments, Arch. Microbiol. 164: 165–172.

    Article  CAS  Google Scholar 

  • Muyzer, M., De Waal, E., and Uitterlinde, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol. 59: 695–700.

    CAS  Google Scholar 

  • Myers, R.M., Maniatis, T., and Lerman L.S., 1987. Detection and localization of single base changes by denaturing gradient gel electrophoresis, Methods Enzymol. 155: 501–527.

    Article  CAS  Google Scholar 

  • Neilson, J.W., Josephson, K.L., Pillai, S.D., and Pepper. I,L., 1992. Polymerase chain reaction and gene probe detection of the 2,4-dichlorophenoxyacetic acid degradation plasmid, pJP4, Appl. Environ. Microbiol. 58: 1271–1275.

    CAS  Google Scholar 

  • Ogram, A.V., and Sayler, G.S., 1988. The use of gene probes in the rapid analysis of natural microbial communities, J Indust. Microbiol. 3: 281–292.

    Article  CAS  Google Scholar 

  • Pace, N.R., Stahl, D.A., Lane, D.J., and Olsen, G.J., 1986. The analysis of natural microbial populations by ribosomal RNA sequences, Adv. Micro. Ecol. 9: 1–55.

    CAS  Google Scholar 

  • Picard, C., Ponsonnet, C., Paget, E., Nesme, X., and Simonet, P., 1992. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction, Appl Environ. Microbiol. 58: 2717–2722.

    CAS  Google Scholar 

  • Regan, K.M., and Crawford, R.L., 1994. Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and l,3,4-triaza-l,3,5-trinitrocyclohexane (RDX), Biotech. Letters 16: 1081–1086.

    Article  CAS  Google Scholar 

  • Roberts, D.J., Kaake, R.H., Funk, S.B., Crawford, D.L., and Crawford, R.L., 1993. Field-scale anaerobic bioremediation of dinoseb-contaminated soils, in: Biotreatment of industrial and hazardous wastes (Levin, M.A., and Gealt, M.A., eds.), McGraw-Hill, New York, pp. 219–244.

    Google Scholar 

  • Sayler, G.S., Shields, M.S., Tedford, E.T., Breen, A., Hooper, S.W., Sirotkin, K.M., and Davis, J.W., 1985. Application of DNA:DNA colony hybridization to the detection of catabolic genotypes in environmental samples, Appl. Environ. Microbiol. 49: 1295

    CAS  Google Scholar 

  • Shin, C.Y., and Crawford, D.L., 1995. Biodegradation of trinitrotoluene (TNT) by a strain of Clostridium bifermentans, in: Bioaugmentation for Site Remediation (R.E. Hinchee, J. Fredrickson and B.C. Alleman, eds.), Battelle Press, Columbus, pp. 57–69.

    Google Scholar 

  • Spain, J.C., and Van Veld, P.A., 1983. Adaptation of natural communities to degradation of xenobiotic compounds: effect of concentration, exposure time and inoculum and chemical structure, Appl. Environ. Microbiol. 45: 428–435.

    CAS  Google Scholar 

  • Teske, A., Wawer, C., Muyzer, G., and Ramsing, N.B., 1996. Distribution of sulfate-reducing bacteria in a stratified fjord (Manager Fjord, Denmark) as evaluated by most-probable number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments, Appl. Environ. Microbiol. 62: 1405–1415.

    CAS  Google Scholar 

  • Tibbies, B.J., and Harris, J.M., 1996. Use of radiolabelled thymidine and leucine to estimate bacterial production in soils from continental Antarctica, Appl. Environ. Microbiol. 62: 694–701.

    Google Scholar 

  • Tiedje, J.M., 1993. Bioremediation from an ecological perspective, in: In situ Bioremediation: When does it Work? National Research Council Committee on In situ Bioremediation, Water Science and Technology Board, Commission on Engineering and Technical Systems, National Academy Press, Washington, D.C., pp. 110–120.

    Google Scholar 

  • Tsai, Y., and Olsen, B.H., 1992. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction, Appl. Environ. Microbiol. 58: 754–757.

    CAS  Google Scholar 

  • Tsai, Y., Park, M.J., and Olsen, B.H., 1991. Rapid method for direct extraction of mRNA from seeded soils, Appl. Environ. Microbiol. 57: 765–768.

    CAS  Google Scholar 

  • Ward, D.M, Weiler, R., and Bateson, M.M., 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community, Nature 343: 63–65.

    Article  Google Scholar 

  • Wawer, C., and Muyzer, G., 1995. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments, Appl. Environ. Microbiol. 61: 2203–221

    CAS  Google Scholar 

  • Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V., 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.

    Article  CAS  Google Scholar 

  • Xia, X., Bollinger, J., and Ogram, A, 1995, Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D, Molecular Ecology, 4: 17–28.

    Article  CAS  Google Scholar 

  • Yuan, W.M., and Crawford, D.L., 1995, Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots, Appl. Environ. Microbiol. 61: 3119–3128.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Budwill, K., Roberts, M., Knaebel, D.B., Crawford, D.L. (1997). Monitoring the Population Dynamics of Biodegradable Consortia During Bioremediation. In: Sayler, G.S., Sanseverino, J., Davis, K.L. (eds) Biotechnology in the Sustainable Environment. Environmental Science Research, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5395-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5395-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7463-3

  • Online ISBN: 978-1-4615-5395-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics