Skip to main content

Testing Induced Nanoscale Instabilities of Secondary Phases in Si3N4, the Tem Approach to High-Temperature Microstructures

  • Chapter
Ceramic Microstructures

Abstract

The significance of dynamic microstructures in liquid-phase sintered Si3N4 due to the constraints of HT-testing is addressed by focusing on three Si3N4 materials which have been tested on a different time scale extending from several minutes to well in excess of 1000 hours. As shown by high-resolution and analytical transmission electron microscopy, HT-testing can introduce nanoscale morphological and compositional instabilities of both the amorphous and crystalline secondary phases, providing a surprisingly sensitive tool to monitor the response of Si3N4 materials at high temperatures, which is otherwise insufficiently described by the as-sintered microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Raj, Fundamental research in structural ceramics for service near 2000°C, J. Am. Ceram. Soc. 76: 2147(1993).

    Article  CAS  Google Scholar 

  2. G.D. Quinn, Fracture mechanism maps for advanced structural ceramics, part 1: methodology and hot pressed silicon nitride results, J. Mater. Sci. 25: 4361 (1990).

    Article  CAS  Google Scholar 

  3. G.D. Quinn and W. Braue, Fracture mechanism maps for advanced structural ceramics, part 2: sintered silicon nitride, J. Mater. Sci. 25: 4377 (1990).

    Article  CAS  Google Scholar 

  4. H.-J. Kleebe, M.J. Hoffmann and M. Rühle, Influence of secondary phase chemistry on grain boundary film thickness in silicon nitride, Z. Metallkd. 83: 8 (1992).

    Google Scholar 

  5. H.-J. Kleebe, M.K. Cinibulk, I. Tanaka, J. Bruley, J.S. Ventrano and M. Rühle, High-resolution electron microscopy studies on silicon nitride ceramics, in: Tailoring of Mechanical Properties of Si3N4 Ceramics, M. J. Hoffmann and G. Petzow, eds., Kluwer Academic Press, 1994.

    Google Scholar 

  6. W. Braue, G. Wöptting and G. Ziegler, The impact of compositional variations and processing conditions on secondary phase characteristics in sintered silicon nitride materials, 883, in: Ceramic Microstructures 1986-The Role of Interfaces, J. A. Pask and A.G. Evans, eds., Plenum Press, 1986.

    Google Scholar 

  7. D.R. Clarke, High-temperature microstructure of a hot-pressed silicon nitride, J. Am. Ceram. Soc. 72: 1604(1989).

    Article  CAS  Google Scholar 

  8. M.K. Cinibulk, H.-J. Kleebe, G.A. Schneider and M. Rühle, Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures,J. Am. Ceram. Soc. 76: 2801 (1993).

    Article  CAS  Google Scholar 

  9. H.-J. Kleebe, W. Braue and W. Luxem, Densification studies of SRBSN with unstabilized zirconia by means of dilatometry and electron microscopy, J. Mater. Sci. 29: 1265 (1994).

    Article  CAS  Google Scholar 

  10. W. Braue, H.-J. Kleebe and J. Göring, Secondary phase instability in ZrC2-doped silicon nitride during high-temperature testing, in: 4th Euro Ceramics, Vol. 3, S. Meriani and V. Sergo, eds., Gruppo Editoriale Faenza Editrice, Italy, 1996.

    Google Scholar 

  11. K. Liddell and D.P. Thompson, X-ray diffraction data for yttrium silicates, Br. Ceram. Trans. 85: 17 (1986).

    CAS  Google Scholar 

  12. W. Braue and G.D. Quinn, Partial devitrification of sintered silicon nitride during static fatigue testing, Mat. Res. Soc. Symp. Proc. 287: 347 (1993).

    Article  CAS  Google Scholar 

  13. T. Rouxel, M. Huger and J.L. Besson, Rheological properties of Y-Si-Al-O-N glasses-elastic moduli, viscosity and creep, J. Mater. Sci. 27: 279 (1992).

    Article  Google Scholar 

  14. S.C. Singhal, Thermodynamics and kinetics of oxidation of hot-pressed silicon nitride, J. Mat. Sci. 11:500(1976).

    Article  CAS  Google Scholar 

  15. G. Leng-Ward and M.H. Lewis, Oxynitride glasses and their glass-ceramic derivatives, 106, in: Glasses and Glass Ceramics, M. H. Lewis, ed., Chapman & Hall, 1986.

    Google Scholar 

  16. CM. Wang, Fine structural features in α-Si3N4 powder particles and their implication, J. Am. Ceram. Soc. 78: 3393 (1995).

    Article  CAS  Google Scholar 

  17. S.M. Wiederhorn and N.J. Tighe, Proof testing of hot-pressed silicon nitride, J. Mater. Sci. 13: 1781 (1978).

    Article  CAS  Google Scholar 

  18. M. Backhaus-Ricoult and Y.G. Gogotsi, identification of oxidation mechanisms in silicon nitride ceramics by transmission electron microscopy studies of oxide scales, J. Mater. Res. 10: 2306 (1995).

    Article  CAS  Google Scholar 

  19. D.R. Clarke, A comparison of reducing and oxidizing heat treatments of hot-pressed silicon nitride, J. Am. Ceram. Soc. 66: 92 (1983).

    Article  CAS  Google Scholar 

  20. M.K. Cinibulk and H.-J. Kleebe, Effects of oxidation on intergranular phases in silicon nitride ceramics, J. Mater. Sci. 28: 5775 (1993).

    Article  CAS  Google Scholar 

  21. J.S. Ventrano, H.-J. Kleebe, E. Hampp, M.J. Hoffmann and R.M. Cannon, Epitaxial deposition of silicon nitride during post-sintering heat treatment, J. Mater. Sci. Letters 11: 1249(1992).

    Article  Google Scholar 

  22. B.S.B. Karunaratne and M.H. Lewis, Grain-boundary de-segregation and intergranular cohesion in Si-Al-O-N ceramics, J. Mater. Sci. 15: 1781 (1980).

    Article  CAS  Google Scholar 

  23. F.F. Lange, B.I. Davis and D.R. Clarke, Compressive creep of Si3N4-MgO-alloys: III, J. Mater. Sci. 15:616(1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Braue, W., Kleebe, HJ. (1998). Testing Induced Nanoscale Instabilities of Secondary Phases in Si3N4, the Tem Approach to High-Temperature Microstructures. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics