Skip to main content

Reactive Coatings on Ceramic Substrates

  • Chapter
Ceramic Microstructures

Abstract

Modification of monolithic substrate surfaces by coating them with a substance different from that of the bulk is currently an important technological issue in structural as well as in functional applications such as: thermal and chemical barriers, wear resistance and tribology, environmental sensors, fibre-reinforced ceramic composites, catalysis, etc.1 Ceramic coatings can be used to enhance the mechanical, chemical, electrical, optical or thermal properties of substrates, or to impart physical and mechanical properties of the substrates not normally possessed by the substrate itself. Although a wide variety of surface modification techniques are available, e.g. thermal spray processes, sol-gel or slurry methods, chemical vapour deposition (CVD), physical vapour deposition (PVD), etc., it is generally very difficult to modify the surface to any significant depth (i.e. >2 (tim) by these routes. This fact limits the adhesion and the possible applications of the obtained coated materials. The solution to this problem requires an increased understanding of chemical and mechanical bonding at the coating-bulk interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Eppler. Ceramic and Glasses. Engineered Materials. Handbook Vol. 4., ASM international, The Matrials Information Society, pp. 991–3 (1991).

    Google Scholar 

  2. J.V. Hoek. Alkali Metal Corrosion of Alumina, Thermodynamics, Phase Diagrams and Testing, Ph.D. Thesis, Tech. University Eindhoven, Netherlands, (1990).

    Google Scholar 

  3. E. Criado, S. De Aza, and D.A. Estrada, Caracteristicas dilatométricas de los aluminatos de calcio, Bol. Soc. Esp. Ceràm. Vidr. 14, 3, pp. 271–3 (1975).

    Google Scholar 

  4. D.H. Lister, and F.P. Glasser, Phase relations in the system CaO-Al2O3-iron oxide, Trans. Brit. Ceram. Soc., 66 pp. 293–305 (1967).

    CAS  Google Scholar 

  5. E. Criado, and S. De Aza, Calcium hexaluminate as refractory material, UNITECR’91, Vol. I, pp. 566–74, Aechen, Germany (1991).

    Google Scholar 

  6. P. Pena, and S. De Aza, Compatibility relations in the system ZrO2-Al2O3-SiO2-CaO, J. Am. Ceram. Soc., 67, C-3–5 (1984).

    Google Scholar 

  7. A.B. Harker, and J.F. Flimtoff, Hot isostatically pressed ceramic and glasses forms for immobilizing Hanford high-level wastes, Adv. Ceram., 8, pp. 222–33 (1984).

    CAS  Google Scholar 

  8. J.D. Hodge, Alkaline earth effects on the reaction of sodium with aluminium oxides, J. Electrochem. Soc. 133, 4, pp. 833–6 (1986).

    Article  CAS  Google Scholar 

  9. A.H. De Aza, P. Pena, and S. De Aza, Research submitted to the J. Am. Ceram. Soc.

    Google Scholar 

  10. I. Kohatsu, and G.W. Brindley, Solid state reactions between CaO and ∝-A12O3, Zeitschr. Phys. Chem. Neue Folge, Bd. 60, pp. 79–89 (1968).

    Article  CAS  Google Scholar 

  11. D. Brooksbank, Thermal expansion of calciumaluminate inclusions and relation to tessellated stresses, J. of The Iron and Steel Institute, May, pp. 495–9 (1970).

    Google Scholar 

  12. D.C. Hitchcock, and L.C. De Jonghe, Fracture toughness anisotropy of sodium ß-alumina, J. Am. Ceram. Soc., 11, 0204–5(1983).

    Article  Google Scholar 

  13. M.K. Cinibulk, Magnetoplumbite compounds as a fiber coating in oxide/oxide composites, Ceram. Eng. Sci. Proc., 15, [5], 721–8 (1994).

    Article  CAS  Google Scholar 

  14. P.E.D. Morgan, and D.B. Marshall, Ceramic composites of monazite and alumina, J. Am. Ceram. Soc., 78, [6],1553–63 (1995).

    Article  CAS  Google Scholar 

  15. Y. Zhang, and P.K. Davis, Stabilization of ordered zirconium titanates through the chemical substitution of Ti4+ by Al3+/Ta5+, J. Am.Ceram. Soc. 77, [3], 743–8 (1994).

    Article  CAS  Google Scholar 

  16. Y.-c. Heiao, L. Wu, and C.-c. Wei, Microwave dielectric properties of (ZrSn)TiO4 ceramic, Mater.Res.Bull. 23, [12], 1687–92 (1988).

    Article  CAS  Google Scholar 

  17. F. Azough, and R. Freer, Microstructural development and microvave dielectric properties of zirconium titanate ceramics sintered with Nd2O3, Euro-Ceramics Vol.2, 2.294–8 (1989).

    Google Scholar 

  18. G. Wolfram, and E. Göbel, Existence range, structural and dielectrical properties of ZrxTiySnzO4 ceramics (x+y+z=2), Mater. Res. Bull. 16, [11], 1455–63 (1981).

    Article  CAS  Google Scholar 

  19. J.A. Navio, M. Macias, and P.J. Sanchez-Soto, Influence of chemical processing in the crystallization behaviour of zirconium titanate materials, J. Mater. Sci. Lett. 11, [23], 1570–2 (1992).

    Article  CAS  Google Scholar 

  20. F.Z. Hund, Mixed-phase pigments based on ZrTiO4, Anorg.Allg.Chem. 525, 221–9 (1985) (Ger.).

    Google Scholar 

  21. J.S. Moya, A.H. de Aza, H.P. Steier, J. Requena and P. Pena, Reactive coating on alumina substrates. Calcium and barium hexa aluminates, Script. Met. et Mat. 31, [8], 1049–54 (1994).

    Article  CAS  Google Scholar 

  22. M. A. Sainz, R. Torrecillas, and J. S. Moya, Novel Technique for Zirconia-Coated Mullite, J. Am. Ceram. Soc. 76, [7], 1869–72 (1993).

    Article  CAS  Google Scholar 

  23. N.C.H. Lubaba, C. M. Wilson, and N. H. Brett, Phase equilibria and solid solution relationships in the system ZrO2-SiO2-TiO2, Br. Ceram. Trans J. 83, 49–54 (1984).

    CAS  Google Scholar 

  24. K. Yamashita, T. Hamano, T. Kaga, K. Koumoto and H. Yanagida, The thickness-dependence of dielectric and physical properties of BaTiO3 ceramic thick films, Jap. J. Appl. Phys. 22, [4], 580–4 (1983).

    Article  CAS  Google Scholar 

  25. Y. Ohara, T. Taki, K. Koumoto and H. Yanagida, Crystal-axis oriented ceramics prepared from fibrous barium titanate, J. Mater. Sci. Let. 11, 1327–9 (1992).

    Google Scholar 

  26. N.C. Sharma, and E.R. McCartney, The dielectric properties of pure barium titanate as a function of grain size, J. Austral. Ceram. Soc. 10, [1], 16–20 (1974).

    CAS  Google Scholar 

  27. P.S. Brody, B.J. Rod, K.W. Bennett, L.P. Cook, P.K. Schenk, M.D. Vaudin, W. Wong-Ng and C.K. Chiang, Preparation, Microstructure and ferroelectric properties of laser-deposited thin BaTiO3 and lead zirconate-titanate films, Integr.Ferr. 1, 239–51 (1992).

    Article  CAS  Google Scholar 

  28. P.P. Phule and S.H. Risbud, Low temperature synthesis and processing of electronic materials in the BaO-TiO2 system, J. Mat. Sci. 25, 1169–83 (1990).

    CAS  Google Scholar 

  29. H.M. O’Bryan, Jr., and J. Thompson, Jr., Phase equilibria in the TiO2-rich region of the system BaO-TiO2, J. Am. Ceram. Soc. 57, [12], 522–6 (1974).

    Article  Google Scholar 

  30. R. Torrecillas, M.A. Sainz, and J.S. Moya, Alumina-alumina and mullite-mullite joining by reaction sintering process, Script. Met. et Mat. 31, 1031–6 (1994).

    Article  CAS  Google Scholar 

  31. R.D. Watkins, in ASM Eng. Mat. Handbook Vol. 4, Ceramics and Glasses, 478–81 (199

    Google Scholar 

  32. H.P. Kirchner, J.C. Conway Jr., and A.E. Segall, Effect of joint thickness and residual stress on the properties of ceramic adhesive joints. I: Finite element analysis of stresses in joints J. Am. Ceram. Soc. 70, 104–8 (1987).

    CAS  Google Scholar 

  33. R.N. Singh, Influence of high-temperature exposure on mechanical properties of zircon-silicon carbide composites, J. Mat. Sci., 26, 1, 117–26 (1991).

    Article  Google Scholar 

  34. R.N. Singh, High temperature mechanical properties of a uniaxilly reinforced zircon-silicon carbide composite, J. Am. Ceram. Soc., 73.,[8], 2399–406 (1990).

    Article  CAS  Google Scholar 

  35. J. Llorca, R.N. Singh, Influence of fiber and interfacial properties on fracture behaviour of fiber-reinforced ceramic composites, J. Am. Ceram. Soc. 74, [11], 2882–9 (1991).

    Article  CAS  Google Scholar 

  36. S.K. Reddy, S. Kumar, R.N. Singh, Residual stresses in silicon carbide-zircon composites, J. Am. Ceram. Soc. 77, [12], 3221–6 (1994)

    Article  CAS  Google Scholar 

  37. P. Pena, and S. de Aza, Compatibility relationships of Al2O3 and ZrO2 in the system ZrO2-Al2O3-SiO2-CaO, Adv. In Ceram. Vol. 12, 174–80 (1984).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moya, J.S., Requena, J., Steier, H.P., De Aza, A.H., Pena, P., Torrecillas, R. (1998). Reactive Coatings on Ceramic Substrates. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics