Skip to main content

Microstructural Control of Zinc Oxide Varistor Ceramics

  • Chapter
Ceramic Microstructures

Abstract

It has been nearly a quarter of a century since Matsuoka (1) reported the non-ohmic properties of ZnO ceramics. During that period ZnO-based ceramics with their highly nonlinear current-voltage characteristics have accrued more than half of the varistor market in numbers and nearly 80% of the market in value as reported by Okinaka and Hata (2). These electronic devices, often referred to as MOV’s, or metal oxide varistors, find applications as surge absorbers, surge arrestors and in micromotors. Although these ZnO-based devices probably have their single largest volume usage in high-voltage power distribution systems, it is becoming increasingly common to protect household applicances and personal computers with varistor devices. It is likely that most readers of this article utilize such a device to protect their personal computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Matsuoka, “Nonohmic properties of zinc oxide ceramics”, Jpn. J. Appl. Phys. 10(6),736 (1971).

    Article  CAS  Google Scholar 

  2. H. Okinaka and T. Hata, “Varistor, thermistor manufacturing in Japan”, Amer. Cer. Soc. Bull. 74(2), 62 (1995).

    CAS  Google Scholar 

  3. L. M. Levinson and H. R. Philipp, “Zinc oxide varistors — a review”, Amer. Cer. Soc. Bull. 65(4), 639 (1986).

    CAS  Google Scholar 

  4. M. A. Seitz, A. K. Yemia and R. W. Hirthe, “AC electrical behavior of individual MOV grain boundaries”, Cer. Trans.:Adv. in Var. Tech. 3, 135 (1989).

    CAS  Google Scholar 

  5. Y-M. Chiang, D. P. Burnie III and W. D. Kingery, 225 in “Physical Ceramics”, J. Wiley, N.Y., N.Y. (1997)

    Google Scholar 

  6. T.K. Gupta, “Influence of microstructure and chemistry on the electrical characteristics of ZnO varistors”, 493 in “Tailoring Multiphase and Composite Ceramics”, Plenum Pub. Corp., N.Y., N.Y. (1986).

    Google Scholar 

  7. E. Olsson, “Interfacial microstructure in ZnO varistor materials”, Ph.D. Thesis, Dept. of Physics, Chalmers University of Technology, Goteborg, Sweden (1988).

    Google Scholar 

  8. J. F. Cordaro, Y. Shim and J. E. May, “Bulk electron traps in ZnO varistors”, J. App. Phys. 60(2), 4186 (1986).

    Article  CAS  Google Scholar 

  9. M. Alim, “Influence of intrinsic trapping on the performance characteristics of ZnO-Bi2O3 based varistors”, Active and Passive Elec. Comp. 17, 99 (1994).

    Article  Google Scholar 

  10. J-H Hwang, T. O. Mason and V. P. Dravid, “Microanalytical determination of ZnO solidus and liquidus boundaries in the ZnO-Bi2O3 system”, J. Amer. Cer. Soc. 77(6), 1499 (1994).

    Article  CAS  Google Scholar 

  11. H.A. B. Alles and V. L. Burdick, “The effect of liquid phase sintering on the properties of Pr6O11-based ZnO varistors”, J. App. Phys. 70(11), 6883 (1991).

    Article  CAS  Google Scholar 

  12. R. M. German, 127 in “Liquid Phase Sintering”, Plenum Pub. Corp., N.Y., N.Y. (1985).

    Google Scholar 

  13. T. K. Gupta, “Effect of K2O on the grain growth of ZnO”, J. Amer. Cer. Soc. 54(6), 413 (1971).

    Article  CAS  Google Scholar 

  14. T. Watari and R. C. Bradt, “Grain growth of sintered ZnO with alkali oxide additions”, J. Cer. Soc. Jap. 101(10), 1085(1993).

    Article  CAS  Google Scholar 

  15. T. Senda and R. C. Bradt, “Grain growth of zinc oxide during the sintering of zinc oxide — antimony oxide ceramics”, J. Amer. Cer. Soc. 74(6), 1296 (1991).

    Article  CAS  Google Scholar 

  16. M. N. Rahaman, 445 in “Ceramic Processing and Sintering”, M. Dekker, Inc., N. Y., N. Y. (1996).

    Google Scholar 

  17. M. Hillert, “On the theory of normal and abnormal grain growth”, Acta Metall. 13(4), 227 (1965).

    CAS  Google Scholar 

  18. J. B. Baldo and R. C. Bradt, “Grain growth of lime and periclase phases in a synthetic doloma”, J. Amer. Cer. Soc. 71(9), 720(1988).

    Article  CAS  Google Scholar 

  19. T. K. Gupta and R. L. Coble, “Sintering of ZnO I: densification and grain growth”, J. Amer. Cer. Soc. 51(9), 521 (1968).

    Article  CAS  Google Scholar 

  20. T. K. Gupta and R. L. Coble, “Sintering of ZnO II: density decrease and pore growth during the final stage of the process”, J. Amer. Cer. Soc. 51(9), 525 (1968).

    Article  CAS  Google Scholar 

  21. T. Senda and R. C. Bradt, “Grain growth in sintered ZnO and ZnO-Bi2O3 ceramics”, J. Amer. Cer. Soc. 73(1), 106(1990).

    Article  CAS  Google Scholar 

  22. G. C. Nicholson, “Grain growth in zinc oxide”, J. Amer. Cer. Soc. 48(4), 214 (1965).

    Article  CAS  Google Scholar 

  23. S. K. Dutta and R. M. Spriggs, “Grain growth in fully dense ZnO”, J. Amer. Cer. Soc. 53(1), 61 (1970).

    Article  CAS  Google Scholar 

  24. D. W. Readey, T. Quadir, and J. H. Lee, “Effects of vapor transport on microstructure development”, 485 in “Ceramic Microstructures’ 86”, Plenum Pub. Corp., N. Y., N. Y. (1986).

    Google Scholar 

  25. Y-C. Chen, C-Y. Shen and L. Wu, “Grain growth processes in ZnO varistors with various valence states of manganese and cobalt”, J. App. Phys. 69(12), 8363 (1991).

    Article  CAS  Google Scholar 

  26. R. Einzinger, “Metal oxide varistors”, Ann. Rev. Mat. Sc. 17, 299 (1987).

    Article  CAS  Google Scholar 

  27. T. K. Gupta, “Application of ZnO varistors”, J. Amer. Cer. Soc. 73(3), 1817 (1990).

    Article  CAS  Google Scholar 

  28. D. R. Clarke, “The microstructural location of the intergranular metal oxide phase in a zinc oxide varistor”, J. App. Phys. 49(4), 2407 (1978).

    Article  CAS  Google Scholar 

  29. W. D. Kingery, J. B. Van der Sande and T. Mitamura, “A scanning transmission microscopy investigation of grain boundary segregaton in a ZnO — Bi2O3 varistor”, J. Amer. Cer. Soc. 62(3-4), 221 (1979).

    Article  CAS  Google Scholar 

  30. K. W. Lay, “Grain growth in UO2 — Al2O3 in the presence of a liquid phase”, J. Amer. Cer. Soc. 51(7), 373 (1968).

    Article  CAS  Google Scholar 

  31. D Dey and R. C. Bradt, “Grain growth of ZnO during Bi2O3 liquid-phase sintering”, J. Amer. Cer. Soc. 75(9), 2529(1992).

    Article  CAS  Google Scholar 

  32. R. C. Bradt, S.I. Nunes, T. Senda, H. Suzuki, and S. L. Burkett, “Grain Growth Control via in-situ particle formation and Zener drag (pinning) during sintering of ZnO”, 389 in “Sintering Technology”, M. Dekker, Inc., N.Y.,N.Y. (1996).

    Google Scholar 

  33. T. Senda and R. C. Bradt, “Twinning in ZnO ceramics with Sb2O3 additions”, J. Jap. Cer. Soc. 99(9), 727 (1991).

    Article  CAS  Google Scholar 

  34. S. I. Nunes and R. C. Bradt, “Grain growth of ZnO in ZnO-Bi2O3 ceramics with Al2O3 additions”, J. Amer. Cer. Soc. 78(9), 2469 (1995).

    Article  CAS  Google Scholar 

  35. H. Suzuki and R. C. Bradt, “Grain growth of ZnO in ZnO-Bi2O3 ceramics with TiO2 additions”, J. Amer. Cer. Soc. 78(5), 1354(1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bradt, R.C., Burkett, S.L. (1998). Microstructural Control of Zinc Oxide Varistor Ceramics. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics