Skip to main content

Characterization of Second Phases in Translucent Alumina by Analytical Transmission Electron Microscopy

  • Chapter
Ceramic Microstructures

Abstract

Microstructures of magnesium aluminate spinel and yttrium aluminate garnet second-phases in translucent alumina were characterized by transmission electron microscopy and convergent beam electron diffraction techniques. High order Laue zone line measurement was employed to examine chemical composition of spinel through lattice parameter determination. Phase equilibrium, the formation of the second phases, and their roles during sintering, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.L. Coble, Sintering alumina: effect of atmosphere, J. Am. Ceram. Soc. 45[3] 123–27 (1962).

    Article  CAS  Google Scholar 

  2. K.K. Soni, A.M. Thompson, M.P. Harmer, D.B. Williams, J.M. Chabala, and R. Levi-Setti, Solute segregation to grain boundaries in MgO-doped alumina, Appl. Phys. Lett. 66[21] 2795–97 (1995).

    Article  CAS  Google Scholar 

  3. S.J. Bennison and M.P. Harmer, A history of the role of MgO in the sintering of α-Al2O3, Ceram. Trans. 7: 13–49 (1990).

    CAS  Google Scholar 

  4. S. Baik and J.H. Moon, Effects of magnesium oxide on grain-boundary segregation of calcium during sintering of alumina, J. Am. Ceram. Soc. 4[4] 819–822 (1991).

    Article  Google Scholar 

  5. C.A. Handwerker, J.M. Dynys, R.M. Cannon, and R.L. Coble, Dihedral angles in MgO and Al2O3: distributions from surface thermal grooves, J. Am. Ceram. Soc. 73[5] 1371–77 (1990).

    Article  CAS  Google Scholar 

  6. W.H. Rhodes, Phase chemistry in the development of transparent polycrystalline oxides, pp. 1–42, in Phase Diagrams for Advanced Ceramics, ed. A. Alper, Academic Press, New York, NY (1995).

    Google Scholar 

  7. R.E. Carter, Mechanism of solid state reaction between magnesium oxide and alumina and between magnesium oxide and ferric oxide, J. Am. Ceram. Soc., 44[3] 116–120 (1961).

    Article  CAS  Google Scholar 

  8. L. Navias, Preparation and properties of spinel made by vapor transport and diffusion in the system MgO-Al2O3, J. Am. Ceram. Soc., 44[9] 434–446 (1961).

    Article  CAS  Google Scholar 

  9. R.C. Rossi and R.M. Fulrath, Epitaxial growth of spinel by reaction in the solid state, J. Am. Ceram. Soc., 46[3] 145–149 (1963).

    Article  CAS  Google Scholar 

  10. W.P. Whitney and V.S. Stubican, Interdiffusion studies in the system MgO-Al2O3, J. Phys. Chem. Solids, 32: 305–312 (1971).

    Article  CAS  Google Scholar 

  11. H.U. Viertel and F. Seifert, Physical properties of defect spinel in the system MgOAl203-Al203, Neues. Jahrb. Mineral, Abh., 134[2] 167–182 (1979).

    CAS  Google Scholar 

  12. Y. Chiang and W.D. Kingery, Grain-boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel: I, grain growth studies, J. Am. Ceram. Soc. 72[7] 271–77 (1989).

    Article  CAS  Google Scholar 

  13. Y. Chiang and W.D. Kingery, Grain-boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel: I, effects of grain-boundary nonstoichiometry, J. Am. Ceram. Soc. 73[5] 1153–58(1990).

    Article  CAS  Google Scholar 

  14. M. Matsui, T. Takahashi, and I. Oda, Influence of MgO vaporization on the final-stage sintering of MgO-Al2O3 spinel, pp. 562–73 in Advances in Ceramics, Vol. 10, Structure and Properties of MgO and Al2O3 ceramics, ed. W.D. Kingery, Am. Ceram. Soc., Columbus, OH 1984.

    Google Scholar 

  15. A. Navrotsky, B.A. Wechsler, K. Geisinger, and F. Seifert, Thermochemistry of MgAl2O4-Al8/3O4 defect spinels, J. Am. Ceram. Soc. 69[5] 418–22 (1986).

    Article  CAS  Google Scholar 

  16. A.M. Alper, R.N. McNalley, P.G. Ribbe, and R.C. Doman, The system MgO-MgAl2O4, J. Am. Ceram. Soc. 45[6] 263–268 (1962).

    Article  CAS  Google Scholar 

  17. Z. Nakagawa, Effect of additives on solid state sintering of alumina, pp.74–88, Trans. Mater. Res. Soc. of Jpn, No. 11, ed. S. Somiya, M. Doyama, and Y. Agata (1992).

    Google Scholar 

  18. R. J. Charles, S. Prochazka, C. E. Scott, Alumina ceramic, US patent No. 4285732 (1981).

    Google Scholar 

  19. D.M. Roy, R. Roy, and E.F. Osborn, The System MgO-Al2O3-SiO2 and Influence of Carbonate and Nitrate Ions on the Phase Equilibria, Am. J. Sci. 251: 337–361 (1953).

    Article  CAS  Google Scholar 

  20. F. Colin, Contribution to the study of phases obtained during the reduction of some nAl2O3-MO oxides, Rev. Hautes Temp. Refract. 5[4] 267–83 (1968).

    CAS  Google Scholar 

  21. P.A. Bosomworth, M.P.Harmer, H.M. Chan, and W.H. Rhodes, Bull. Am. Ceram. Soc. 65: 499 (1986).

    Google Scholar 

  22. K. Ando and M. Momoda, Solubility of MgO in single-crystal Al2O3, J. Jpn. Ceram. Soc. 95[4] 381 (1987).

    CAS  Google Scholar 

  23. J.C. Cawley and J.W. Halloran, Dopant distribution in nominally yttrium-doped sapphire. J. Am. Ceram. Soc., 69[8] C195–96 (1986).

    Google Scholar 

  24. R.E. Shannon, D.L. Johnson, and M.E. Fine, Precipitation hardening of spinel with excess MgO, J. Am. Ceram. Soc. 57[6] 269 (1974).

    Article  CAS  Google Scholar 

  25. E. Stoll, P. Fischer, W. Halg, and G. Maier, Redetermination of the cation distribution of spinel (MgAl2O4) by means of neutron diffraction, J. Phys. (Orsay, Fr.), 25: 447–48 (1964).

    Article  CAS  Google Scholar 

  26. S.J. Bennison and M.P. Harmer, Grain growth kinetics for alumina in the absence of a liquid phase, J. Am. Ceram. Soc. 68[1] C22–24 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wei, G.C., Jeon, SJ., Sung, C., Rhodes, W.H. (1998). Characterization of Second Phases in Translucent Alumina by Analytical Transmission Electron Microscopy. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics