Skip to main content

Making the Connection Between Atomistic Modelling of Interfaces and Real Materials

  • Chapter
Ceramic Microstructures
  • 963 Accesses

Abstract

Why is anyone interested in control at the atomic level? One obvious answer is that control at the atomic level enables control at larger scales. Some examples of this are clear enough; nano-engineering is precisely about this. However, in many cases the question of how control at the atomic level results in control at other length scales is far from clear. This is particularly the case in complex materials where many mechanisms are active at once. Putting reactive elements into an alloy to control the growth of the resulting scale is an attempt to control atomistic processes, but the details of how it works are often obscure. Yet control implies that we can identify what the important mechanisms are and then find a procedure that will enhance (or inhibit) the mechanism we want to affect without causing problems elsewhere. The traditional way of controlling complex systems is trial and error. The equally traditional difficulty is the large error to trial ratio. In the hope of reducing this a bit, people have turned to modelling complex processes. However, unless we are in the (unusual) position of being able to model everything the problem of deciding what the important mechanisms are remains. The strategy of mesoscopic modelling is to attempt to identify the individual mechanisms and model these at the appropriate length scale (which will often be atomistic but need not be) and then to build a model of how these mechanisms interact to produce the process. If the result of a process is a material, a final goal will often be to predict the properties of the material as a function of the conditions under which it was made. ‘Properties’ may be of two main kinds. First, we may require the effective bulk properties (elastic constants, thermal conductivity). These depend on the averaged behaviour of the microstructure but are unlikely to be dependent on individual features of the microstructure. Other properties such as the probability of fracture may well depend on such features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. E. King, G. Campbell, T. Gonis, G. Henshall, D. Lesuer, E. Zywicz, and S. Foiles, Theory, simulation, and modeling of interfaces in materials-bridging the length-scale gap: a workshop report, Mater. Sci. Eng., A191:1 (1995).

    CAS  Google Scholar 

  2. G. Binnig, C. F. Quate and C. Gerber, Atomic force microscope Phys. Rev. Lett.,-56:930(1986).

    Article  Google Scholar 

  3. F. Ohnesorge and G. Binnig, True atomic resolution by atomic force microscopy through atomic and repulsive forces, Science, 260:1451 (1993).

    Article  CAS  Google Scholar 

  4. A. Shluger, C. Pisani, C. Roetti and R. Orlando, Ab initio simulation of the interaction between ionic crystal surfaces and the atomic force microscope tip, J. Vac. Sci., A8:3967 (1990).

    Article  Google Scholar 

  5. A. L. Shluger, A. L. Rohl, D. H. Gay, and R. T. Williams, Atomistic theory of the interaction between AFM tips and ionic surfaces, J. Phys. Cond. Mater., 6:1825 (1994).

    Article  CAS  Google Scholar 

  6. A. L. Shluger, R. M. Wilson and R. T. Williams, Theoretical and experimental investigation of force imaging at the atomic scale on alkali halide crystals, Phys. Rev., B49:4915 (1994).

    Google Scholar 

  7. A. L. Shluger, A. L. Rohl, R. T. Williams and R. M. Wilson, Model of a scanning force microscope on ionic surfaces, Phys. Rev., B52:11398 (1995).

    Google Scholar 

  8. A. L. Shluger, R. T. Williams and A. L. Rohl, Lateral and friction forces originating during force force microscopy scanning of ionic surfaces; Surf Sct., 343:273 (1996).

    Article  Google Scholar 

  9. S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, A new study of critical layer thickness, stability and strain relaxation in pseudomorphic GexSi1‐x strained epilayers, Phil. Mag., A65:1151 (1992).

    Google Scholar 

  10. S. C. Jain, M. Willander and H. Maes, Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors, Semicond. Sci. Tech., 11:461 (1996).

    Article  Google Scholar 

  11. S. C. Jain, A. H. Harker and R. A. Cowley, Misfit strains and misfit dislocations in lattice-mismatched epitaxial layers and other systems, Adv. in Phys. in press.

    Google Scholar 

  12. A. H. Harker, K. Pinardi, S. C. Jain, A. Atkinson and R. Bullough, Two-dimensional finite-element calculation of stress and strain in a stripe epilayer and substrate, Phil, Mag., A71:871 (1995).

    Google Scholar 

  13. S. C. Jain, A. H. Harker, A. Atkinson and K. Pinardi, Edge induced stress and strain in stripe films and substrates: A 2D finite element calculation, J. Appl. Phys., 78:1630(1995).

    Article  CAS  Google Scholar 

  14. S. C. Jain, B. Dietrich, H. Richter, A. Atkinson and A. H. Harker, Stresses in strained GeSi stripes: Calculation and determination from Raman measurements, Phys. Rev. B52:6247 (1995).

    Google Scholar 

  15. J. H. Harding, Computer simulation of defects in ionic solids; Rep. Prog. Phys., 53:1403(1990).

    Article  CAS  Google Scholar 

  16. I. Dawson, P. D. Bristowe, M-H Lee, M. C. Payne, M. D. Segall and J. A. White. A first principles study of a tilt grain boundary in rutile, J. Phys. Cond. Mater. in press.

    Google Scholar 

  17. T. X. T. Sayle, C. R. A. Catlow, D. C. Sayle, S. C. Parker and J. H. Harding, Computer simulation of thin film heteroepitaxial ceramic interfaces using a near-coincidence-site lattice theory, Phil. Mag., A68:565 (1993).

    Google Scholar 

  18. D.C. Sayle, S. C. Parker and J. H. Harding, Accommodation of the misfit strain energy in the BaO(100)/MgO(100) heteroepitaxial ceramic interface using computer simulation techniques, J. Mater. Sci., 4:1883 (1994).

    CAS  Google Scholar 

  19. P. W. Tasker, The surface energy, surface tensions and surface structure of the alkali halide crystals, Phil. Mag., A39:119 (1979).

    Google Scholar 

  20. H. Grimmer, W. Bollman, and D. H. Warrington, Coincidence site lattices and complete pattern shift lattices in cubic crystals, Acta Cryst. 30:197 (1974).

    Article  Google Scholar 

  21. H. Mykura, P. S. Bansal and M. H. Lewis, Coincidence-site-lattice relations for MgO-CdO interfaces, Phil. Mag., A42:225 (1980).

    Google Scholar 

  22. D. G. Brandon, B. Ralph, S. Ranganathan and M. S. Wald, A field ion microscope study of atomic configuration at grain boundaries, Acta Metall., 12:813 (1964).

    Article  Google Scholar 

  23. A. H. King and A. Singh, Generalising the coincidence site lattice model to non-cubic systems, J. Phys. Chem. Solids., 55:1023 (1994).

    Article  CAS  Google Scholar 

  24. D. M. Duffy, Grain boundaries in ionic crystals, J. Phys., C19:4393 (1986).

    Google Scholar 

  25. D. C. Sayle, T. X. T. Sayle, S. C. Parker, C. R. A. Catlow and J. H. Harding, The effect of defects on the stability of heteroepitaxial ceramic interfaces as studied by computer simulation, Phys. Rev., B50:14498 (1994).

    Google Scholar 

  26. D. C. Sayle, T. X. T. Sayle, S. C. Parker, J. H. Harding and C. R. A. Catlow, The stability of defects in the ceramic interfaces MgO/MgO and CeO2AI2O3/ Surf. Sct., 334:170(1994).

    Article  Google Scholar 

  27. G. W. Watson, E. T. Kelsey, N. H. de Leeuw, D. J. Harris and S. C. Parker, Atomistic simulation of dislocations, surfaces and interfaces in MgO, J. Phys. Cond. Mater., in press.

    Google Scholar 

  28. J. A. Venables, Atomic processes in crystal growth, Surf: Sci., 299/300:798 (1994).

    Article  Google Scholar 

  29. R. A. McKee, F. J. Walker, E. D. Specht, G. E. Jellison, L. A. Boatner and J. H. Harding, Interface stability and the growth of optical quality perovskites on MgO, Phys. Rev. Lett., 72:2741 (1994).

    Article  CAS  Google Scholar 

  30. A L. Shluger, A. L. Rohl and D. H. Gay, Properties of small clusters at ionic surfaces: (NaCl)n clusters (n=1–48) at the (100)MgO surface, Phys. Rev., B51:13631 (1995).

    Google Scholar 

  31. J. Tersoff, A. W. D. van der Gon. and R. M. Tromp, Critical ion size for layer-by-layer growth Phys. Rev. Lett., 72:266 (1994).

    Article  CAS  Google Scholar 

  32. J. Tersoff, C. Tiechert and M. G. Lagally, Self organisation in quamum dot superlattices, Phys. Rev. Lett., 76:1675 (1996).

    Article  CAS  Google Scholar 

  33. Q. Xie, A. Madhukar, P. Chen and N. P. Kobayashi, Vertically self-organised InAs quantum box islands on GaAs (100), Phys. Rev. Lett., 47:1459 (1981).

    Article  Google Scholar 

  34. K. Batchelor, Transport properties of two-phase materials with random structure, Ann. Rev. Fluid. Mech., 6:227 (1974)

    Article  Google Scholar 

  35. M. Ferrari, Composite homogenisation via the equivalent poly-inclusion approach, Comp. Eng., 4:37 (1994).

    Article  Google Scholar 

  36. J. H. Harding and A. H. Harker, Effective medium theories for cracked and porous media, unpublished work.

    Google Scholar 

  37. W. L. Bragg, and A. B. Pippard, The form birefringence of macromolecules, Acta Cryst., 6:865. (1953).

    Article  CAS  Google Scholar 

  38. M. Bertagnolli, M. Marchese, G. Jacucci, I. St Doltsinis and S. Nolting, Finite element thermo-mechanical simulation of droplets impacting on a rigid substrate, Materials and Design Technology (ed TJ Kozik) 62:199, ASME (1994).

    Google Scholar 

  39. P. Fauchais A. Grimaud, A. Vardelle, and M. Vardelle, La projection par plasma: une revue; Ann. Phys. Fr., 14:261 (1989)

    Article  CAS  Google Scholar 

  40. S. Cirolini, M. Marchese, G. Jacucci, J. H. Harding, and P. A. Mulheran, Modelling the microstructure of thermal barrier coatings, Materials and Design Technology (ed TJ Kozik) 62:189 ASME (1994).

    Google Scholar 

  41. M. Schutze, An approach to a global model of the mechanical behaviour of oxide scales, Mater, at High Temp., 12:237 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harding, J.H., Harker, A.H., Shluger, A.L., Stoneham, A.M. (1998). Making the Connection Between Atomistic Modelling of Interfaces and Real Materials. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics