Skip to main content

Control of the Microstructure of Polycrystalline Diamond And Related Materials Via an Enhanced Cvd Process

  • Chapter
Ceramic Microstructures

Abstract

High quality diamond films have potential applications in high speed, high temperature electronic devices and hard, wear resistant coatings for cutting tools. Diamond is an ideal material for substrates or thin films in integrated circuits because it has the combined properties of high thermal conductivity, high electrical resistivity, and low dielectric constant.1,5 In addition to passive roles as heat sinks, diamond is also being evaluated as a device material for microwave frequency and semiconductor applications. Diamond is desirable for electronics operating at microwave frequencies because of its low susceptibility to X-ray, ultraviolet, and gamma radiation damage.3,5 The interest in diamond as a semiconductor stems from its ability to operate at temperatures between 100°C and 500°C, beyond the range of most smaller band gap semiconductors.6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoover, D.S., Solid State Tech., Feb., 89 (1991).

    Google Scholar 

  2. Ramesham, R., Roppel, T., Ellis, C., and Rose, M.F., J. Electrochem Soc., 138, 1706 (1991).

    Article  CAS  Google Scholar 

  3. Spear, K.E., J. Am. Ceram. Soc., 72, 171 (1989).

    Article  CAS  Google Scholar 

  4. Field, J.E., ed., The Properties of Diamond, Academic Press, London (1979).

    Google Scholar 

  5. Shenai, K., Scott, R.S., and Baliga, J., IEEE Transactions on Electron Devices, 36, 1811 (1989).

    Article  CAS  Google Scholar 

  6. Geis, M.W. and Angus, J.C., Scientific American, 267, 84 (1992).

    Article  CAS  Google Scholar 

  7. Derjaguin, B.V. and Fedoseev, D.B., Scientific American, 233, 102 (1975).

    Article  Google Scholar 

  8. Eversole, W.G., U.S. Patent No. 3,003,188 (1962).

    Google Scholar 

  9. Angus, J.C., Will, H.A., and Stanko, W.S., J. Appl. Phys. 39, 2915 (1968).

    Article  CAS  Google Scholar 

  10. Angus, J.C., Buck, F.A., Sunkara, M., Groth, T.F., Hayman, C.C., and Gat. R., MRS Bulletin, 14, 38 (1989).

    CAS  Google Scholar 

  11. Ramesham, R. and Roppel, T., J. Materials Research, 7, 2785 (1992).

    Article  Google Scholar 

  12. Masood, A., Aslam, M., Tamor, M.A., and Potter, T. J., J. Electrochem. Soc., 138, L67 (1991).

    Article  CAS  Google Scholar 

  13. Davidson, J.L., Ramesham, R., and Ellis, C., J. Electrochem. Soc., 137, 3206 (1990).

    Article  CAS  Google Scholar 

  14. Narayan, J. and Chen, X., J. Appl. Phys., 71, 3795 (1992).

    Article  CAS  Google Scholar 

  15. Valdes, J.L., Mitchel, J.W., Mucha, J.A., Seibles, L., and Huggins, H., J. Electrochem. Soc., 138, 635 (1991).

    Article  CAS  Google Scholar 

  16. Adair, J.H. and Singh, R.K., U.S. Patent No. 5,485,804 (1996).

    Google Scholar 

  17. Shergold, H.L. and Hartley, C.J., Int. J. Mineral Processing, 9, 219, (1982).

    Article  CAS  Google Scholar 

  18. Hartley, C.J. and Shergold, H.L., Chemistry and Industry, 6, 244 (1980).

    Google Scholar 

  19. Hansen, J.O., Copperthwaite, R.G., Derry, T.E., and Pratt, J.M., J. Colloid Interface Sci., 130, 347 (1989).

    Article  CAS  Google Scholar 

  20. Hunter, R.J., Foundations of Colloid Science, Volume I, Oxford University Press, Oxford, (1986).

    Google Scholar 

  21. Iler, R.K., The Chemistry of Silica, Wiley-Interscience, New York, (1979).

    Google Scholar 

  22. Horn, D., in: Polymeric Amines ands Ammonium Salts, E.J. Goethals, ed., Pergamon Press, Oxford (1980).

    Google Scholar 

  23. Hunter, R.J., Introduction to Modern Colloid Science, Oxford University Press, Oxford, (1993).

    Google Scholar 

  24. Singh, R.K., Gilbert, D., Tellshow, R., Holloway, P.H., Ochoa, R., Simmons, J.H., Koba, R., Appl. Phys. Lett., 61, 2863(1992).

    Article  Google Scholar 

  25. Gilbert, D.R. and Singh, R., in: Advances in Coatings Technologies for Corrosion and Wear Resistant Coatings, Srivatsa, A.R., Clayton, C.R., and Hirvonen, J.K., eds., The Minerals, Metals & Materials Society, (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carasso, M.L., Staehle, S.S., Demkowicz, P.A., Gilbert, D.R., Singh, R.K., Adair, J.H. (1998). Control of the Microstructure of Polycrystalline Diamond And Related Materials Via an Enhanced Cvd Process. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics