Skip to main content

Synthesis and Microstructure of Mullite Fibers Grown from Deeply Undercooled Melts

  • Chapter

Abstract

Structural fibers that exhibit high strength, low creep, and oxidation resistance at high temperatures are a key requirement in the development of advanced ceramic-ceramic composite materials.1–3 Oxide materials offer considerable potential to meet this need; many oxides have the required high intrinsic properties. However, the synthesis of oxide fibers with sufficiently high practical properties and acceptably low production cost has not yet been achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Lowden and M.A. Karnitz, “A Survey of the Status of Ceramic Reinforcement Technology and Its Relationship to CFCCs for Industrial Applications,” Oak Ridge National Laboratory, Oak Ridge, TN (1996).

    Google Scholar 

  2. A.G. Evans, “Perspective on the Development of High Toughness Ceramics,” J. Am. Ceram. Soc., 73[2] 187–206 (1990).

    Article  CAS  Google Scholar 

  3. R.J. Kerans R.S. Hay N.J. Paga and T.A. Parthasarathy “The Role of Fiber-Matrix Interfaces in Ceramic Composites” Am. Ceram. Soc. Bull. 68[2] 429–4421993

    Google Scholar 

  4. P. E. D. Morgan and D. B. Marshall, “Ceramic Composites of Monazite and Alumina,” J. Am. Ceram. Soc., 78[6] 1553–1563 (1995).

    Article  CAS  Google Scholar 

  5. W.M. Kriven, “Displacive Transformations and Their Applications in Structural Ceramics,” J. De Physique IV, 5, C8, 101–110 (1995).

    Article  CAS  Google Scholar 

  6. J.K.R. Weber, J.J. Felten and P.C. Nordine, “New Method for High Purity Ceramic Synthesis,” Rey. Sci. Instrum, 67, 552–24 (1996).

    Google Scholar 

  7. J.K.R. Weber, D.S. Hampton, D.R. Merkley, C.A. Rey, M.M. Zatarski and P.C. Nordine, “Aero-acoustic Levitation — A Method for Containerless Liquid Phase Processing at High Temperatures,” Rev. Sci. Instrum, 65, 456–465 (1994).

    Article  CAS  Google Scholar 

  8. J.K.R. Weber, D.R. Merkley, C.D. Anderson, P.C. Nordine, C.S. Ray and D.E. Day, “Enhancement of Calcia-Gallia Glass Formation by Containerless Processing,” J. Am. Ceram. Soc., 76, 2139 (1993).

    Article  CAS  Google Scholar 

  9. J.K.R. Weber, C.D. Anderson, S. Krishnan and P.C. Nordine, “Structure of Aluminum Oxide Formed from Undercooled Melts,” J. Am. Ceram. Soc., 78, 577–82(1995).

    Article  CAS  Google Scholar 

  10. C.M. Huang, Y. Xu, F. Xiong, A. Zangvil and W.M. Kriven, “Laser Ablation Coatings on Ceramic Fibers for Ceramic Matrix Composites,” J. Mat. Sci. and Eng, A191, 249–56 (1995).

    Article  CAS  Google Scholar 

  11. A. Sayir and L.E. Matson, “Growth and Characterization of Directionally Solidified Al2O3/Y3Al5O12 (YAG) Eutectic Fibers,” NASA Conf. Publications 10082 High Temp. Review, Oct 29th — 30th (1991), pp. 83.1–83.

    Google Scholar 

  12. J.M. Collins, H.E. Bates and J.J. Fitzgibbon, “Growth and Characterization of Single Crystal YAG Fibers,” Materials Directorate, Wright Laboratory, Air Force Material Command, Wright Patterson AFB, OH Report WL-TR-94-4085, June 1994.

    Google Scholar 

  13. C W. Burnham, “The Crystal Structure of Mullite,” Yearb. Carnegie Inst., 62, 158–165(1963).

    Google Scholar 

  14. C. W. Burnham, “The Crystal Structure of Mulllite,” Yearb. Carnegie Inst., 63, 223–228(1564).

    Google Scholar 

  15. S. Durovic, “Refinement of the Crystal Structure of Mullite,” Chem. Zvesti, 23, 113–128(1969).

    CAS  Google Scholar 

  16. R. Sadanaga, M. Tokonami and Y. Tackeuchi, “The Structure of Mullite, 2Al2O3●SiO2 and Relationship with the Structures of Sillimanite and Andalusite,” Acta Crystallogr. 15, 65–68 (1962).

    Article  CAS  Google Scholar 

  17. S. O. Agrell and J. V. Smith, “Cell Dimensions, Solid Solutions, Polymorphism and Identification of Mullite and Sillimanite,” J. Am. Ceram. Soc., 43[2] 69–76 (1960).

    Article  CAS  Google Scholar 

  18. W. E. Cameron, “Mullite: A Substituted Alumina,” Am. Mineral. 62, 747–755 (1977).

    CAS  Google Scholar 

  19. W. E. Cameron, “Composition and Cell Dimensions of Mullite,” Am. Ceram. Soc. Bull, 56[11] (1977).

    Google Scholar 

  20. W. M. Kriven and J. A. Pask, “Solid Solution Range and Microstructures of Melt-Grown Mullite,” J. Am. Ceram. Soc., 66[9] 649–654 (1983).

    Article  CAS  Google Scholar 

  21. W. M. Kriven, R. A. Gronsky and J. A. Pask, “Dislocations and Low-angle Grain Boundaries in Mullite,” this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kriven, W.M. et al. (1998). Synthesis and Microstructure of Mullite Fibers Grown from Deeply Undercooled Melts. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics