Skip to main content

Structure and Composition of Interfaces in Ceramics and Ceramic Composites

  • Chapter
  • 972 Accesses

Abstract

The inherently brittle nature of ceramics, arising from their lack of plastic deformation mechanisms at ambient temperatures, subjects their macroscopic mechanical properties to microscopic flaws, such as processing voids, secondary phases, and/or grain boundaries. Advances in ceramic processing have curtailed the detrimental aspects of the former two flaw types. Utilizing recent advances in microstructural characterization techniques, the structure and chemistry of grain boundaries, and/or interfaces in ceramics composites, can be engineered to actually enhance mechanical properties.1–3 Thus, future improvements in ceramic properties via the control of ceramic microstructure requires a comprehensive knowledge of atomic structure and chemical composition of interfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Pask, A. G. Evans (Eds.), Ceramic Microstructures’ 86: Role of Interfaces Plenum Press, New York, London (1987).

    Google Scholar 

  2. M. Rühle and A. G. Evans, Prog Mat. Sci., 33:85 (1989).

    Article  Google Scholar 

  3. A. G. Evans, J. Am. Ceram. Soc., 73:187(1990).

    Article  CAS  Google Scholar 

  4. I. Majid, P. D. Bristowe and R. W. Balluffi, Phys. Rev. B, 40:2779 (1989).

    Article  CAS  Google Scholar 

  5. M. W. Finnis and M. Ruhle, in: Materials Science and Technology, R. Cahn, P. Haasen and E. Kramer, eds., Vol. 1: Structure of Solids, V. Gerold, ed., VCH-Verlag Weinheim, 533–605 (1992).

    Google Scholar 

  6. A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials, Clarendon Press Oxford (1995).

    Google Scholar 

  7. T. Hoche, P. R. Kenway, H. J. Kleebe and M. Rühle, J. Am. Ceram Soc., 77:339 (1994).

    Article  Google Scholar 

  8. D.R. Clarke, J. Am. Ceram. Soc. 70: 15 (1987).

    Article  CAS  Google Scholar 

  9. H. J. Kleebe, M. K. Cinibulk, R. M. Cannon and M. Rühle, J. Am. Ceram Soc., 76:1969(1993).

    Article  CAS  Google Scholar 

  10. High-Voltage and High-Resolution Electron-Microscopy, M. Ruhle, F. Phillipp, A. Seeger, J. Heidenreich, eds., Ultramicroscopy, 56:1–232 (1994).

    Google Scholar 

  11. Proceedings of the Second International Workshop on Electron Energy Loss Spectroscopy and Imaging (EELSI), O. L. Krivanek, ed., Microsc. Microanal. Microstruct., 6:1–157 (1995).

    Google Scholar 

  12. French-Japanese Seminar on In Situ Electron Microscopy, F. Louchet, H. Saka, eds., Microsc. Microanal. Microstruct., 4:101–346 (1993).

    Google Scholar 

  13. S. J. Pennycook and D. E. Jesson, Ultramicroscopy, 37:14 (1991).

    Article  Google Scholar 

  14. M. H. Loretto, Electron Beam Analysis of Materials, Chapman and Hall, London (1984).

    Book  Google Scholar 

  15. P. Hirsch, A. Howie, R. Nicholson, D. W. Pashley and M. J. Whelan, Electron Microscopy of Thin Crystals, Butterworths, London (1965).

    Google Scholar 

  16. E. Hornbogen, B. Skrotzki, Werstoffe Mikroskopie, 2nd. ed, Springer Verlage, Berlin (1993).

    Book  Google Scholar 

  17. R. F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd. ed., Plenum Press, New York (1996).

    Book  Google Scholar 

  18. P. Rez, in: Microbeam Analysis, R. Gooley, ed., San Francisco Press, San Francisco (1983).

    Google Scholar 

  19. R. Brydson, J. Bruley, H. Mullejans, C. Scheu and M. Rühle, Ultramicroscopy, 59:81 (1995).

    Article  CAS  Google Scholar 

  20. C. Scheu, G. Dehm, H. Mullejans, R. Brydson and M. Rühle, Microsc. Microanal. Microstruct., 6:19(1995).

    Article  CAS  Google Scholar 

  21. R. D. Leapman, L. A. Gruncs, P. L. Fejes, Phys. Rev. B, 26:614 (1982).

    Article  CAS  Google Scholar 

  22. R. Brydson, H. Sauer and W. Engel, in: Transmission Electron Energy Loss Spectrometry in Materials Science, M. M. Disko, C. C. Ahn, B. Fultz, eds., TMS Monograph Series, Warrendale, USA, 131 154(1992).

    Google Scholar 

  23. P. Buseck, J. Cowley, L. Eyring, High Resolution Transmission Electron Microscopy and Associated Techniques, Oxford University Press, Oxford (1992).

    Google Scholar 

  24. L. Reimer, Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, Springer, Berlin (1989).

    Book  Google Scholar 

  25. J. C. H. Spence, Experimental High-Resolution Electron Microscopy, 2nd ed., Oxford University Press, New York, Oxford (1988).

    Google Scholar 

  26. S. Horiuchi, Fundamentals of High-Resolution Transmission Electron Microscopy, Elsevier Science B.V., Amsterdam (1994).

    Google Scholar 

  27. D. Hofmann and F. Ernst, Ultramicroscopy, 53:205 (1994).

    Article  CAS  Google Scholar 

  28. D. Hoffmann and F. Ernst, Interface Science, 2:210 (1994).

    Google Scholar 

  29. F. Phillipp, R. Hoeschen, G. Möbus, M. Osaki and M. Rühle, Ultramicroscopy, 56:1 (1994).

    Article  CAS  Google Scholar 

  30. K. Nadarzinski and F. Ernst, in: Intergranular and Interphase Boundaries in Materials, A. C. Ferro, E. P. Conde, E. A. Fortes, eds., Trans Tech Publications, Zurich, 309–312 (1996).

    Google Scholar 

  31. K. Nadarzinski and F. Ernst, PhiL Mag A, (1996) in press.

    Google Scholar 

  32. J. D. Cawley, W. E. Lee, Oxide Ceramics, in: Materials Science and Technology, R.W. Cahn, P. Haasen, E. J. Kramer, eds., Vol. 11: Structure and Properties of Ceramics, M.V. Swarz, ed., VCH, Weinheim (1994).

    Google Scholar 

  33. I. Manassidis, A. DeVita and M. J. Gillan, Surface Science Letter 285:L517 (1993).

    CAS  Google Scholar 

  34. I. Manassidis, M. J. Gillan, J. Am. Ceram. Soc., 77:335 (1994).

    Article  CAS  Google Scholar 

  35. M. Wilson, M. Exner, Y.-M. Huang and M.W. Finnis, unpublished research.

    Google Scholar 

  36. T. Gemming, G. Möbus and M. Rühle, unpublished research.

    Google Scholar 

  37. T. Hoche, P. R. Kenway, H. J. Kleebe, M. W. Finnis and M. Rühle, J. Phys. Chem. Solids, 55:1067 (1994).

    Article  Google Scholar 

  38. H. Grimmer, R. Bonnet, S. Lartigue and L. Priester, Phil. Mag., 61:493 (1990).

    Article  CAS  Google Scholar 

  39. D. Bouchet, F. Dupar and S. Lartigue-Korinek, Microsc. Microanal. Microstr., 4:561 (1993).

    Article  CAS  Google Scholar 

  40. W. Swiatuicki, S. Lartigue-Korinek, A. Dubon and J. Y. Laval, Mater. Sci. Forum, 126–128:193(1993).

    Google Scholar 

  41. M. Rühle, Fresenius Z. Anal Chem., 349:49 (1994).

    Article  Google Scholar 

  42. M. Rühle, G. Necker and W. Mader, Ceramic Transactions, 5:340 (1989).

    Google Scholar 

  43. H. F. Fischmeister, G. Elssner, B. Gibbesch, K.-H. Kadow D. Korn. F. Kawa. W. Mader and M. Turwitt, Rev. Sci Instrument, 64:234 (1992).

    Article  Google Scholar 

  44. P. R. Kenway. Phil. Mag., B68:171 (1993).

    Article  Google Scholar 

  45. Y. M. Huang, M. W. Finnis, G. Möbus and M. Rühle, unpublished research.

    Google Scholar 

  46. W. H. Gibson (Ed.), Alumina as a Ceramic Material, The American Ceramic Soc., Inc., Columbus/Ohio (1970).

    Google Scholar 

  47. E. Dorre, H. Hubner, Alumina, Springer-Verlag, Berlin (1984).

    Book  Google Scholar 

  48. W. E. Lee, W. M. Rainforth, Ceramic Microstructures, Chapman and Hall, London (1994).

    Google Scholar 

  49. J. Fang, A. M. Thompson, M. P. Harmer and H. M. Chan, J Am. Ceram. Soc., 79 (1996), in print.

    Google Scholar 

  50. S. J. Bennison and M. P. Harmer, Ceramic Transactions, 7:13 (1990).

    CAS  Google Scholar 

  51. J. Bruley, T. Hoche, H.-J. Kleebe and M. Rühle, J. Am. Ceram. Soc., 77:2273 (1994).

    Article  CAS  Google Scholar 

  52. T. Hoche and M. Ruhle, J. Am. Ceram. Soc., 79:1961 (1996).

    Article  Google Scholar 

  53. E. Schumann, J. C. Yang, M. Rühle and M. J. Graham, MAS Symp. Proc., 364:1291 (1995).

    Article  CAS  Google Scholar 

  54. G. Dehm M. Rühle, G. Dinz and R. Rai, Phil. Mag., B71:1111 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rühle, M., Dehm, G., Scheu, C. (1998). Structure and Composition of Interfaces in Ceramics and Ceramic Composites. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics