Skip to main content

Antithrombin

A Bloody Important Serpin

  • Chapter
Chemistry and Biology of Serpins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 425))

Abstract

Antithrombin is a major regulator of blood clotting. It is a plasma proteinase inhibitor that inactivates a number of coagulation proteinases, although its physiologically most important target enzymes are Factor Xa and thrombin. The enzymes are inactivated by being trapped in tight, equimolar complexes with the inhibitor. The rates of these reactions are moderate under normal conditions but are greatly accelerated by the sulfated mast-cell glycosaminoglycan, heparin, and certain species of the related cell-surface molecule, heparan sulfate. The latter polysaccharide presumably functions as an activator of antithrombin on the vessel wall. The importance of antithrombin in normal hemostasis is borne out by the tendency of individuals with antithrombin deficiencies to develop venous thromboses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunt, L.T. and Dayhoff, M.O. (1980) A surprising new protein superfamily containing ovalbumin, antithrombin III, and alpha1-proteinase inhibitor. Biochem. Biophys. Res. Commun. 95: 864–871.

    Article  PubMed  CAS  Google Scholar 

  2. Carrell, R. and Travis, J. (1985) a1-Antitrypsin and the serpins: variation and countervariation. Trends Biochem. Sci. 10: 20–24.

    Article  CAS  Google Scholar 

  3. Huber, R. and Carrell, R.W. (1989) Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry 28: 8951–8966.

    Article  PubMed  CAS  Google Scholar 

  4. Petersen, T.E., Dudek-Wojciechowska, G., Sottrup-Jensen, L. and Magnusson, S. (1979) Primary structure of antithrombin III(heparin cofactor). Partial homology between a1-antitrypsin and antithrombin III. pp. 43–54, In “The Physiological Inhibitors of Blood Coagulation and Fibrinolysis” (Eds., Collen, D., Wiman, B. and Verstraete, M.), Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  5. Bock, S.C., Wion, K.L., Vehar, G.A. and Lawn, R.M. (1982) Cloning and expression of the cDNA for human antithrombin III. Nucleic Acids Res. 10: 8113–8125.

    Article  PubMed  CAS  Google Scholar 

  6. Prochownik, E.V., Markham, A.F. and Orkin, S.H. (1983) Isolation of a cDNA clone for human antithrom-bin III. J. Biol. Chem. 258: 8389–8394.

    PubMed  CAS  Google Scholar 

  7. Chandra, T., Stackhouse, R. Kidd, V.J. and Woo, S.L. (1983) Isolation and sequence characterization of a cDNA clone of human antithrombin III Proc. Natl. Acad. Sci. U. S. A. 80: 1845–1848.

    Article  PubMed  CAS  Google Scholar 

  8. Carlson, T.H. and Atencio, A.C. (1982) Isolation and partial characterization of two distinct types of antithrombin III from rabbit. Thromb. Res. 27: 23–34.

    Article  PubMed  CAS  Google Scholar 

  9. Peterson, C.B. and Blackburn, M.N. (1985) Isolation and characterization of an antithrombin III variant with reduced carbohydrate content and enhanced heparin binding. J. Biol. Chem. 260: 610–615.

    PubMed  CAS  Google Scholar 

  10. Brennan, S.O., George, P.M. and Jordan, R.E. (1987) Physiological variant of antithrombin-IIl lacks carbohydrate sidechain at Asn 135. FEBS Lett. 219: 431–436.

    Article  PubMed  CAS  Google Scholar 

  11. Picard, V., Ersdal-Badju, E. and Bock, S.C. (1995) Partial glycosylation of antithrombin III asparagine-135 is caused by the serine in the third position of its N-glycosylation consensus sequence and is responsible for production of the (β-antithrombin III isoform with enhanced heparin affinity. Biochemistry 34: 8433–8440.

    Article  PubMed  CAS  Google Scholar 

  12. Franzén, L.E., Svensson, S. and Larm,O. (1980) Structural studies on the carbohydrate portion of human antithrombin III. J. Biol. Chem. 255: 5090–5093.

    PubMed  Google Scholar 

  13. Mizuochi, T., Fujii, J., Kurachi, K. and Kobata, A. (1980) Structural studies of the carbohydrate moiety of human antithrombin III. Arch. Biochem. Biophys. 203: 458–465.

    Article  PubMed  CAS  Google Scholar 

  14. Stephens, A.W., Siddiqui, A. and Hirs, C.H. (1987) Expression of functionally active human antithrombin III. Proc. Natl. Acad. Sci. U. S. A. 84: 3886–3890.

    Article  PubMed  CAS  Google Scholar 

  15. Zettlmeissl, G., Conradt, H.S., Nimtz, M. and Karges, H.E. (1989) Characterization of recombinant human antithrombin III synthesized in Chinese hamster ovary cells. J. Biol. Chem. 264: 21153–21159.

    PubMed  CAS  Google Scholar 

  16. Gillespie, L.S., Hillesland, K.K. and Knauer, D.J. (1991) Expression of biologically active human anti-thrombin III by recombinant baculovirus in Spodoptera frugiperda cells. J. Biol. Chem. 266: 3995–4001.

    PubMed  CAS  Google Scholar 

  17. Ersdal-Badju, E., Lu, A., Peng, X., Picard, V., Zendehrouh, P., Turk, B., Björk, I., Olson, S.T. and Bock, S.C. (1995) Elimination of glycosylation heterogeneity affecting heparin affinity of recombinant human antithrombin III by expression of a β-like variant in baculovirus-infected insect cells. Biochem. J. 310: 323–330.

    PubMed  CAS  Google Scholar 

  18. Fan, B., Crews, B.C., Turko, I.V., Choay, J., Zettlmeissl, G. and Gettins, P. (1993) Heterogeneity of recombinant human antithrombin III expressed in baby hamster kidney cells. Effect of glycosylation differences on heparin binding and structure. J. Biol. Chem. 268: 17588–17596.

    PubMed  CAS  Google Scholar 

  19. Schreuder, H.A., De Boer, B., Dijkema, R., Mulders, J., Theunissen, H.J.M., Grootenhuis, P.D.J. and Hol, W.G.J. (1994) The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Struct. Biol. 1: 48–54.

    Article  PubMed  CAS  Google Scholar 

  20. Carrell, R.W., Stein, P.E., Fermi, G. and Wardell, M.R. (1994) Biological implications of a 3 Å structure of dimeric antithrombin. Structure 2: 257–270.

    Article  PubMed  CAS  Google Scholar 

  21. Wei, A., Rubin, H., Cooperman, B.S. and Christianson, D.W. (1994) Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nature Struct. Biol. I: 251–258.

    Article  Google Scholar 

  22. Song, H.K., Lee, K.N., Kwon, K.S., Yu, M.H. and Suh, S.W. (1995) Crystal structure of an uncleaved a1-antitrypsin reveals the conformation of its inhibitory reactive loop. FEBS Lett. 377: 150–154.

    Article  PubMed  CAS  Google Scholar 

  23. Stein, P.E., Leslie, A.G., Finch, J.T. and Carrell, R.W. (1991) Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. J. Mol. Biol. 221: 941–959.

    Article  PubMed  CAS  Google Scholar 

  24. Chang, W.S.W., Wardell, M.R., Lomas, D.A. and Carrell, R.W. (1996) Probing serpin reactive-loop conformations by proteolytic cleavage. Biochem. J. 314: 647–653.

    PubMed  CAS  Google Scholar 

  25. Mourey, L., Samama, J.-P., Delarue, M., Petitou, M., Choay, J. and Moras, D. (1993) Crystal structure of cleaved bovine antithrombin III at 3.2 Å resolution. J. Mol. Biol. 232: 223–241.

    Article  PubMed  CAS  Google Scholar 

  26. . Bruch, M., Weiss, V. and Engel, J. (1988) Plasma serine proteinase inhibitors (serpins) exhibit major conformational changes and a large increase in conformational stability upon cleavage at their reactive sites. J. Biol. Chem. 263: 16626–16630.

    PubMed  CAS  Google Scholar 

  27. Mast, A.E., Enghild, J.J., Pizzo, S.V. and Salvesen, G. (1991) Analysis of the plasma elimination kinetics and conformational stabilities of native, proteinase-complexed, and reactive site cleaved serpins: comparison of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, antithrombin III, alpha 2-antiplasmin, angiotensinogen, and ovalbumin. Biochemistry 30: 1723–1730.

    Article  PubMed  CAS  Google Scholar 

  28. Mottonen, J., Strand, A., Symersky, J., Sweet, R.M., Danley, D.E., Geoghegan, K.F., Gerard, R.D. and Goldsmith, E.J. (1992) Structural basis of latency in plasminogen activator inhibitor-1. Nature 355: 270–273.

    Article  PubMed  CAS  Google Scholar 

  29. Schulze, A.J., Baumann, U., Knof, S., Jaeger, E., Huber, R. and Laurel!, C.B. (1990) Structural transition of alpha 1-antitrypsin by a peptide sequentially similar to beta-strand s4A. Eur. J. Biochem. 194: 51–56.

    Article  PubMed  CAS  Google Scholar 

  30. Carrell, R.W., Evans, D.L. and Stein, P.E. (1991) Mobile reactive centre of serpins and the control of thrombosis. Nature 353: 576–578.

    Article  PubMed  CAS  Google Scholar 

  31. Björk, I., Ylinenjärvi, K., Olson, S.T. and Bock, P.E. (1992) Conversion of antithrombin from an inhibitor of thrombin to a substrate with reduced heparin affinity and enhanced conformational stability by binding of a tetradecapeptide corresponding to the P1 to P14 region of the putative reactive bond loop of the inhibitor. J. Biol. Chem. 267: 1976–1982.

    PubMed  Google Scholar 

  32. Schulze, A.J., Frohnert, P.W., Engh, R.A. and Huber, R. (1992) Evidence for the extent of insertion of the active site loop of intact a, proteinase inhibitor in (3-sheet A. Biochemistry 31: 7560–7565.

    Article  PubMed  CAS  Google Scholar 

  33. Olson, S.T. and Shore, J.D. (1982) Demonstration of a two-step reaction mechanism for inhibition of alpha-thrombin by antithrombin III and identification of the step affected by heparin. J. Biol. Chem. 257: 14891–14895.

    PubMed  CAS  Google Scholar 

  34. Danielsson, A. and Björk, I. (1982) Mechanism of inactivation of trypsin by antithrombin. Biochem. J. 207: 21–28.

    PubMed  CAS  Google Scholar 

  35. Latallo, Z.S. and Jackson, C.M. (1986) Reaction of thrombins with human antithrombin III: II. Dependence of rate of inhibition on molecular form and origin of thrombin. Thromb. Res. 43: 523–537.

    Article  PubMed  CAS  Google Scholar 

  36. Craig, P.A., Olson, S.T. and Shore, J.D. (1989) Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Characterization of assembly, product formation, and heparin dissociation steps in the factor Xa reaction. J. Biol. Chem. 264: 5452–5461.

    PubMed  CAS  Google Scholar 

  37. Wong, R.F., Windwer, S.R. and Feinman, R.D. (1983) Interaction of thrombin and antithrombin. Reaction observed by intrinsic fluorescence measurements. Biochemistry 22: 3994–3999.

    Article  PubMed  CAS  Google Scholar 

  38. Stone, S.R. and Hermans, J.M. (1995) Inhibitory mechanism of serpins. Interaction of thrombin with antithrombin and protease nexin 1. Biochemistry 34: 5164–5172.

    Article  PubMed  CAS  Google Scholar 

  39. Carlström, A.S., Liedén, K. and Björk, I. (1977) Decreased binding of heparin to antithrombin following the interaction between antithrombin and thrombin. Thromb. Res. 11: 785–797.

    Article  PubMed  Google Scholar 

  40. Wallgren, P., Nordling, K. and Björk, I. (1981) Immunological evidence for a proteolytic cleavage at the active site of antithrombin in the mechanism of inhibition of coagulation serine proteases. Eur. J. Biochem. 116: 493–496.

    Article  PubMed  CAS  Google Scholar 

  41. Peterson, C.B. and Blackburn, M.N. (1987) Antithrombin conformation and the catalytic role of heparin.I. Does cleavage by thrombin induce structural changes in the heparin-binding region of antithrombin ? J. Biol. Chem. 262: 7552–7558.

    PubMed  CAS  Google Scholar 

  42. Jörnvall, H., Fish, W.W. and Björk, I. (1979) The thrombin cleavage site in bovine antithrombin. FEBS Lett. 106: 358–362.

    Article  PubMed  Google Scholar 

  43. Björk, I., Danielsson, Å, Fenton, J.W.,II and Jörnvall, H. (1981) The site in human antithrombin for functional proteolytic cleavage by human thrombin. FEBS Lett. 126: 257–260.

    Article  PubMed  Google Scholar 

  44. Björk, I., Jackson, C.M., Jörnvall, H., Lavine, K.K., Nordling, K. and Salsgiver, W.J. (1982) The active site of antithrombin. Release of the same proteolytically cleaved form of the inhibitor from complexes with factor IXa, factor Xa, and thrombin. J. Biol. Chem. 257: 2406–2411.

    PubMed  Google Scholar 

  45. Erdjument, H., Lane, D.A., Panico, M., Di Marzo, V. and Morris, H.R. (1988) Single amino acid substitutions in the reactive site of antithrombin leading to thrombosis. Congenital substitution of arginine 393 to cysteine in antithrombin Northwick Park and to histidine in antithrombin Glasgow. J. Biol. Chem. 263: 5589–5593.

    PubMed  CAS  Google Scholar 

  46. Owen, M.C., Beresford, C.H. and Carrell, R.W. (1988) Antithrombin Glasgow, 393 Arg to His: a PI reactive site variant with increased heparin affinity but no thrombin inhibitory activity. FEBS Lett. 231: 317–320.

    Article  PubMed  CAS  Google Scholar 

  47. Lane, D.A., Erdjument, H., Thompson, E., Panico, M., Di Marzo, V., Morris, H.R., Leone, G., De Stefano, V. and Thein, S.L. (1989) A novel amino acid substitution in the reactive site of a congenital variant antithrombin. Antithrombin pescara, Arg393 to Pro, caused by a CGT to CCT mutation. J. Biol. Chem. 264: 10200–10204.

    PubMed  CAS  Google Scholar 

  48. Stephens, A.W., Siddiqui, A. and Hirs, C.H. (1988) Site-directed mutagenesis of the reactive center (serine 394) of antithrombin III. J. Biol. Chem. 263: 15849–15852.

    PubMed  CAS  Google Scholar 

  49. Theunissen, H.J.M., Dijkema, R., Grootenhuis, P.D.J., Swinkels, J.C., De Poorter, T.L., Carati, P. and Visser, A. (1993) Dissociation of heparin-dependent thrombin and factor Xa inhibitory activities of antithrombin-III by mutations in the reactive site. J. Biol. Chem. 268: 9035–9040.

    PubMed  CAS  Google Scholar 

  50. Olson, S.T., Stephens, A.W., Hirs, C.H.W., Bock, P.E. and Björk, I. (1995) Kinetic characterization of the proteinase binding defect in a reactive site variant of the serpin, antithrombin. Role of the PI’ residue in transition-state stabilization of antithrombin-proteinase complex formation. J. Biol. Chem. 270: 9717–9724.

    Article  PubMed  CAS  Google Scholar 

  51. Blajchman, M.A., Fernandez-Rachubinski, F., Sheffield, W.P., Austin, R.C. and Schulman, S. (1992) Antithrombin-III-Stockholm: a codon 392 (Gly-Asp) mutation with normal heparin binding and impaired serine protease reactivity. Blood 79: 1428–1434.

    PubMed  CAS  Google Scholar 

  52. Sheffield, W.P. and Blajchman, M.A. (1994) Site-directed mutagenesis of the P2 residue of human antithrombin. FEBS Lett. 339: 147–150.

    Article  PubMed  CAS  Google Scholar 

  53. Sheffield, W.P. and Blajchman, M.A. (1994) Amino acid substitutions of the P2 residue of human antithrombin that either enhance or impair function. Thromb. Res. 75: 293–305.

    Article  PubMed  CAS  Google Scholar 

  54. Olson, S.T., Bock, P.E., Kvassman, J., Shore, J.D., Lawrence, D.A., Ginsburg, D. and Björk, I. (1995) Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family-Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes. J. Biol. Chem. 270: 30007–30017.

    Article  PubMed  CAS  Google Scholar 

  55. Le Bonniec, B.F., Guinto, E.R. and Stone, S.R. (1995) Identification of thrombin residues that modulate its interactions with antithrombin III and al-antitrypsin. Biochemistry 34: 12241–12248.

    Article  PubMed  Google Scholar 

  56. Rezaie, A.R. (1996) Tryptophan 60-D in the B-insertion loop of thrombin modulates the thrombin antithrombin reaction. Biochemistry 35: 1918–1924.

    Article  PubMed  CAS  Google Scholar 

  57. Perry, D.J., Daly, M., Harper, P.L., Tait, R.C., Price, J., Walker, I.D. and Carrell, R.W. (1991) Antithrombin Cambridge II, 384 Ala to Ser. Further evidence of the role of the reactive centre loop in the inhibitory function of the serpins. FEBS Lett. 285: 248–250.

    Article  PubMed  CAS  Google Scholar 

  58. Laskowski, M.,Jr. and Kato, I. (1980) Protein inhibitors of proteinases. Annu. Rev. Biochem. 49: 593–626.

    Article  PubMed  CAS  Google Scholar 

  59. Matheson, N.R., van Halbeek, H. and Travis, J. (1991) Evidence for a tetrahedral intermediate complex during serpin-proteinase interactions. J. Biol. Chem. 266: 13489–13491.

    PubMed  CAS  Google Scholar 

  60. Shieh, B.H., Potempa, J. and Travis, J. (1989) The use of alpha 2-antiplasmin as a model for the demonstration of complex reversibility in serpins. J. Biol. Chem. 264: 13420–13423.

    PubMed  CAS  Google Scholar 

  61. Fish, W.W. and Björk, I. (1979) Release of a two-chain form of antithrombin from the antithrombinthrombin complex. Eur. J. Biochem. 101: 31–38.

    Article  PubMed  CAS  Google Scholar 

  62. Olson, S.T. (1985) Heparin and ionic strength-dependent conversion of antithrombin III from an inhibitor to a substrate of alpha-thrombin. J. Biol. Chem. 260: 10153–10160.

    PubMed  CAS  Google Scholar 

  63. Patston, P.A., Gettins, P., Beechem, J. and Schapira, M. (1991) Mechanism of serpin action: evidence that Cl inhibitor functions as a suicide substrate. Biochemistry 30: 8876–8882.

    Article  PubMed  CAS  Google Scholar 

  64. Cooperman, B.S., Stavridi, E., Nickbarg, E., Rescorla, E., Schechter, N.M. and Rubin, H. (1993) Antichymotrypsin interaction with chymotrypsin. Partitioning of the complex. J. Biol. Chem. 268: 23616–23625.

    PubMed  CAS  Google Scholar 

  65. Ferguson, W.S. and Finlay, T.H. (1983) Formation and stability of the complex formed between human antithrombin-III and thrombin. Arch. Biochem. Biophys. 220: 301–308.

    Article  PubMed  CAS  Google Scholar 

  66. Lawrence, D.A., Ginsburg, D., Day, D.E., Berkenpas, M.B., Verhamme, I.M., Kvassman, J.O. and Shore, J.D. (1995) Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J. Biol. Chem. 270: 25309–25312.

    Article  PubMed  CAS  Google Scholar 

  67. Wilczynska, M., Fa, M., Ohlsson, P.I. and Ny, T. (1995) The inhibition mechanism of serpins-Evidence that the mobile reactive center loop is cleaved in the native protease inhibitor complex. J. Biol. Chem. 270: 29652–29655.

    Article  PubMed  CAS  Google Scholar 

  68. Rosenberg, R.D. and Damus, P.S. (1973) The purification and mechanism of action of human antithrombinheparin cofactor. J. Biol. Chem. 248: 6490–6505.

    PubMed  CAS  Google Scholar 

  69. Owen, W.G. (1975) Evidence for the formation of an ester between thrombin and heparin cofactor. Biochim. Biophys. Acta 405: 380–387.

    Article  PubMed  CAS  Google Scholar 

  70. Jesty, J. (1979) Dissociation of complexes and their derivatives formed during inhibition of bovine thrombin and activated factor X by antithrombin III. J. Biol. Chem. 254: 1044–1049.

    PubMed  CAS  Google Scholar 

  71. Molho-Sabatier, P., Aiach, M., Gaillard, I., Fiessinger, J.N., Fischer, A.M., Chadeuf, G. and Clauser, E. (1989) Molecular characterization of antithrombin III (ATIII) variants using polymerase chain reaction. Identification of the ATIII Charleville as an Ala 384 Pro mutation. J. Clin. Invest. 84: 1236–1242.

    Article  PubMed  CAS  Google Scholar 

  72. Caso, R., Lane, D.A., Thompson, E.A., Olds, R.J., Thein, S.L., Panico, M., Blench, I., Morris, H.R., Freyssinet, J.M. and Aiach, M. (1991) Antithrombin Vicenza, Ala 384 to Pro (GCA to CCA) mutation, transforming the inhibitor into a substrate. Br. J. Haematol. 77: 87–92.

    Article  PubMed  CAS  Google Scholar 

  73. Austin, R.C., Rachubinski, R.A., Ofosu, F.A. and Blajchman, M.A. (1991) Antithrombin-III-Hamilton, Ala 382 to Thr: an antithrombin-III variant that acts as a substrate but not an inhibitor of alpha-thrombin and factor Xa. Blood 77: 2185–2189.

    PubMed  CAS  Google Scholar 

  74. Austin, R.C., Rachubinski, R.A. and Blajchman, M.A. (1991) Site-directed mutagenesis of alanine-382 of human antithrombin III. FEBS Lett. 280: 254–258.

    Article  PubMed  CAS  Google Scholar 

  75. Shiver, K., Wikoff, W.R., Patston, P.A., Tausk, F., Schapira, M., Kaplan, A.P. and Bock, S.C. (1991) Substrate properties of Cl inhibitor Ma (alanine 434-glutamic acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor/substrate status. J. Biol. Chem. 266: 9216–9221.

    Google Scholar 

  76. Hopkins, P.C.R., Carrell, R.W. and Stone, S.R. (1993) Effects of mutations in the hinge region of serpins. Biochemistry 32: 7650–7657.

    Article  PubMed  CAS  Google Scholar 

  77. Björk, I., Nordling, K. and Olson, S.T. (1993) Immunologic evidence for insertion of the reactive-bond loop of antithrombin into the A β-sheet of the inhibitor during trapping of target proteinases. Biochemistry 32: 6501–6505.

    Article  PubMed  Google Scholar 

  78. Shore, J.D., Day, D.E., Francis-Chmura, A.M., Verhamme, I., Kvassman, J., Lawrence, D.A. and Ginsburg, D. (1995) A fluorescent probe study of plasminogen activator inhibitor-1. Evidence for reactive center loop insertion and its role in the inhibitory mechanism. J. Biol. Chem. 270: 5395–5398.

    Article  PubMed  CAS  Google Scholar 

  79. Wright, H.T. and Scarsdale, J.N. (1995) Structural basis for serpin inhibitor activity. Proteins 22: 210–225.

    Article  PubMed  CAS  Google Scholar 

  80. Lawrence, D.A., Strandberg, L., Ericson, J. and Ny, T. (1990) Structure-function studies of the SERPIN plasminogen activator inhibitor type 1. Analysis of chimeric strained loop mutants. J. Biol. Chem. 265: 20293–20301.

    PubMed  CAS  Google Scholar 

  81. Danielsson, A. and Björk, I. (1980) Slow, spontaneous dissociation of the antithrombin-thrombin complex produces a proteolytically modified form of the inhibitor. FEBS Lett. 119: 241–244.

    Article  PubMed  CAS  Google Scholar 

  82. Danielsson, A. and Björk, I. (1983) Properties of antithrombin-thrombin complex formed in the presence and in the absence of heparin. Biochem. J. 213: 345–353.

    PubMed  CAS  Google Scholar 

  83. Fish, W.W., Orre, K. and Björk, I. (1979) The production of an inactive form of antithrombin through limited proteolysis by thrombin. FEBS Lett. 98: 103–106.

    Article  PubMed  CAS  Google Scholar 

  84. Björk, I. and Fish, W.W. (1982) Production in vitro and properties of a modified form of bovine antithrombin, cleaved at the active site by thrombin. J. Biol. Chem. 257: 9487–9493.

    PubMed  Google Scholar 

  85. Lindo, V.S., Kakkar, V.V. and Melissari, E. (1995) Cleaved antithrombin (ATc): A new marker for thrombin generation and activation of the coagulation system. Br. J. Haematol. 89: 157–162.

    Article  PubMed  CAS  Google Scholar 

  86. Lane, D.A. and Lindahl, U. (1989) “Heparin. Chemical and Biological Properties. Clinical Applications”, Edward Arnold, London.

    Google Scholar 

  87. Lane, D.A., Björk, I. and Lindahl, U. (1992) “Heparin and Related Polysaccharides”, Plenum Press, New York.

    Google Scholar 

  88. Jordan, R.E., Oosta, G.M., Gardner, W.T. and Rosenberg, R.D. (1980) The kinetics of haemostatic enzymeantithrombin interactions in the presence of low molecular weight heparin. J. Biol. Chem. 255: 10081–10090.

    PubMed  CAS  Google Scholar 

  89. Griffith, M.J. (1982) Kinetics of the heparin-enhanced antithrombin III/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J. Biol. Chem. 257: 7360–7365.

    PubMed  CAS  Google Scholar 

  90. Olson, S.T. and Björk, I. (1991) Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J. Biol. Chem. 266: 6353–6364.

    PubMed  CAS  Google Scholar 

  91. Olson, S.T., Björk, I., Sheffer, R., Craig, P.A., Shore, J.D. and Choay, J. (1992) Role of the antithrombinbinding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J. Biol. Chem. 267: 12528–12538.

    PubMed  CAS  Google Scholar 

  92. Lam, L.H., Silbert, J.E. and Rosenberg, R.D. (1976) The separation of active and inactive forms of heparin. Biochem. Biophys. Res. Commun. 69: 570–577.

    Article  PubMed  CAS  Google Scholar 

  93. Höök, M., Björk, I., Hopwood, J. and Lindahl, U. (1976) Anticoagulant activity of heparin: Separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin. FEBS Lett. 66: 90–93.

    Article  PubMed  Google Scholar 

  94. Andersson, L.O., Barrowcliffe, T.W., Holmer, E., Johnson, E.A. and Sims, G.E.C. (1976) Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin III and by gel filtration. Thromb. Res. 9: 575–583.

    Article  PubMed  CAS  Google Scholar 

  95. Lindahl, U., Bäckström, G., Thunberg, L. and Leder, I.G. (1980) Evidence for a 3–0-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc. Natl. Acad. Sci. U.S.A. 77: 6551–6555.

    Article  PubMed  CAS  Google Scholar 

  96. Casu, B., Oreste, P., Toni, G., Zoppetti, G., Choay, J., Lormeau, J.C., Petitou, M. and Sinay, P. (1981) The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13C nuclear-magnetic-resonance studies. Biochem. J. 197: 599–609.

    PubMed  CAS  Google Scholar 

  97. Thunberg, L., Bäckström, G. and Lindahl, U. (1982) Further characterization of the antithrombin-binding sequence in heparin. Carbohydr. Res. 100: 393–410.

    Article  PubMed  CAS  Google Scholar 

  98. Atha, D.H., Stephens, A.W. and Rosenberg, R.D. (1984) Evaluation of critical groups required for the binding of heparin to antithrombin. Proc. Natl. Acad. Sci. U. S. A. 81: 1030–1034.

    Article  PubMed  CAS  Google Scholar 

  99. Atha, D.H., Lormeau, J.C., Petitou, M., Rosenberg, R.D. and Choay, J. (1985) Contribution of monosaccharide residues in heparin binding to antithrombin III. Biochemistry 24: 6723–6729.

    Article  PubMed  CAS  Google Scholar 

  100. Choay, J., Petitou, M., Lormeau, J.C., Sinay, P., Casu, B. and Gatti, G. (1983) Structure-activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem. Biophys. Res. Commun. 116: 492–499.

    Article  PubMed  CAS  Google Scholar 

  101. Sinay, P., Jacquinet, J.C., Petitou, M., Duchaussoy, P., Lederman, I., Choay, J. and Torri, G. (1984) Total synthesis of a heparin pentasaccharide fragment having high affinity for antithrombin III. Carbohydr. Res. 132: C5 - C9.

    Article  CAS  Google Scholar 

  102. van Boeckel, C.A.A. and Petitou, M. (1993) The unique antithrombin III binding domain of heparin: A lead to new synthetic antithrombotics. Angew. Chem. 32: 1671–1690.

    Article  Google Scholar 

  103. Nordenman, B., Danielsson, A. and Björk, I. (1978) The binding of low-affinity and high-affinity heparin to antithrombin. Fluorescence studies. Eur. J. Biochem. 90: 1–6.

    Article  PubMed  CAS  Google Scholar 

  104. Jordan, R.E., Beeler, D.L. and Rosenberg, R.D. (1979) Fractionation of low molecular weight heparin species and their interaction with antithrombin. J. Biol. Chem. 254: 2902–2913.

    PubMed  CAS  Google Scholar 

  105. Olson, S.T., Srinivasan, K.R., Björk, I. and Shore, J.D. (1981) Binding of high affinity heparin to anti-thrombin III. Stopped flow kinetic studies of the binding interaction. J. Biol. Chem. 256: 11073–11079.

    PubMed  CAS  Google Scholar 

  106. Streusand, V.J., Björk, I., Gettins, P.G.W., Petitou, M. and Olson, S.T. (1995) Mechanism of acceleration of antithrombin-proteinase reactions by low affinity heparin. Role of the antithrombin binding pentasaccharide in heparin rate enhancement. J. Biol. Chem. 270: 9043–9051.

    Article  PubMed  CAS  Google Scholar 

  107. Nordenman, B. and Björk, I. (1981) Influence of ionic strength and pH on the interaction between high-affinity heparin and antithrombin. Biochim. Biophys. Acta 672: 227–238.

    Article  PubMed  CAS  Google Scholar 

  108. Koide, T., Odani, S., Takahashi, K., Ono, T. and Sakuragawa, N. (1984) Antithrombin III Toyama: replacement of arginine-47 by cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc. Natl. Acad. Sci. U. S. A. 81: 289–293.

    Article  PubMed  CAS  Google Scholar 

  109. Borg, J.Y., Owen, M.C., Soria, C., Soria, J., Caen, J. and Carrell, R.W. (1988) Proposed heparin binding site in antithrombin based on arginine 47. A new variant Rouen-II, 47 Arg to Ser. J. Clin. Invest. 81: 1292–1296.

    Article  PubMed  CAS  Google Scholar 

  110. Borg, J.Y., Brennan, S.O., Carrell, R.W., George, P., Perry, D.J, and Shaw, J. (1990) Antithrombin Rouen-IV 24 Arg-Cys. The amino-terminal contribution to heparin binding. FEBS Lett. 266: 163–166.

    Article  PubMed  CAS  Google Scholar 

  111. Gandrille, S., Aiach, M., Lane, D.A., Vidaud, D., Molho-Sabatier, P., Caso, R., de Moerloose, P., Fiessinger, J.N. and Clauser, E. (1990) Important role of arginine 129 in heparin-binding site of antithrombin III. Identification of a novel mutation arginine 129 to glutamine. J. Biol. Chem. 265: 18997–19001.

    PubMed  CAS  Google Scholar 

  112. Najjam, S., Chadeuf, G., Gandrille, S. and Aiach, M. (1994) Arg-129 plays a specific role in the conformation of antithrombin and in the enhancement of factor Xa inhibition by the pentasaccharide sequence of heparin. Biochim. Biophys. Acta 1225: 135–143.

    Article  PubMed  CAS  Google Scholar 

  113. Peterson, C.B., Noyes, C.M., Pecon, J.M., Church, F.C. and Blackburn, M.N. (1987) Identification of a lysyl residue in antithrombin which is essential for heparin binding. J. Biol. Chem. 262: 8061–8065.

    PubMed  CAS  Google Scholar 

  114. Fan, B., Turko, I.V. and Gettins, P.G.W. (1994) Lysine-heparin interactions in antithrombin. Properties of K125M and K290M,K294M,K297M variants. Biochemistry 33: 14156–14161.

    Article  PubMed  CAS  Google Scholar 

  115. Liu, C.S. and Chang, J.Y. (1987) The heparin binding site of human antithrombin III. Selective chemical modification at Lys114, Lys125, and Lys287 impairs its heparin cofactor activity. J. Biol. Chem. 262: 17356–17361.

    PubMed  CAS  Google Scholar 

  116. Chang, J.Y. (1989) Binding of heparin to human antithrombin III activates selective chemical modification at lysine 236. Lys-107, Lys-125, and Lys-136 are situated within the heparin-binding site of antithrombin III. J. Biol. Chem. 264: 3111–3115.

    PubMed  CAS  Google Scholar 

  117. Sun, X.J. and Chang, J.Y. (1990) Evidence that arginine-129 and arginine-145 are located within the heparin binding site of human antithrombin III. Biochemistry 29: 8957–8962.

    Article  PubMed  CAS  Google Scholar 

  118. Grootenhuis, P.D.J. and van Boeckel, C.A.A. (1991) Constructing a molecular model of the interaction between antithrombin III and a potent heparin analogue. J. Am. Chem. Soc. 113: 2743–2747.

    Article  CAS  Google Scholar 

  119. van Boeckel, C.A.A., Grootenhuis, P.D.J. and Visser, A. (1994) A mechanism for heparin-induced potentiation of antithrombin III. Nature Struct. Biol. 1: 423–425.

    Article  PubMed  Google Scholar 

  120. Chang, J.Y. and Tran, T.H. (1986) Antithrombin III Basel. Identification of a Pro-Leu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity. J. Biol. Chem. 261: 1174–1176.

    PubMed  CAS  Google Scholar 

  121. Olds, R.J., Lane, D.A., Boisclair, M., Sas, G., Bock, S.C. and Thein, S.L. (1992) Antithrombin Budapest 3. An antithrombin variant with reduced heparin affinity resulting from the substitution L99F. FEBS Lett. 300: 241–246.

    Article  PubMed  CAS  Google Scholar 

  122. Lane, D.A., Olds, R.J., Conard, J., Boisclair, M., Bock, S.C., Hultin, M., Abildgaard, U.. Ireland, H., Thompson, E., Sas, G., Horellou, M.H., Tamponi, G. and Thein, S.-L. (1992) Pleiotropic effects of antithrombin strand 1C substitution mutations. J. Clin. Invest. 90: 2422–2433.

    Article  PubMed  CAS  Google Scholar 

  123. Okajima, K., Abe, H., Maeda, S., Motomura, M., Tsujihata, M., Nagataki, S., Okabe, H. and Takatsuki, K. (1993) Antithrombin III Nagasaki (Ser116-Pro): A heterozygous variant with defective heparin binding associated with thrombosis. Blood 81: 1300–1305.

    PubMed  CAS  Google Scholar 

  124. Mille, B., Watton, J., Barrowcliffe, T.W., Mani, J.-C. and Lane, D.A. (1994) Role of N- and C-terminal amino acids in antithrombin binding to pentasaccharide. J. Biol. Chem. 269: 29435–29443.

    PubMed  CAS  Google Scholar 

  125. Chowdhury, V., Mille, B., Olds, R.J., Lane, D.A., Watton, J., Barrowcliffe, T.W., Pabinger, I., Woodcock, B.E. and Thein, S.L. (1995) Antithrombins Southport (Leu 99 to Val) and Vienna (Gln 118 to Pro): Two novel antithrombin variants with abnormal heparin binding. Br. J. Haematol. 89: 602–609.

    Article  PubMed  CAS  Google Scholar 

  126. Villanueva, G.B. and Danishefsky, I. (1977) Evidence for a heparin-induced conformational change on antithrombin III. Biochem. Biophys. Res. Commun. 74: 803–809.

    Article  CAS  Google Scholar 

  127. Nordenman, B. and Björk, I. (1978) Binding of low-affinity and high-affinity heparin to antithrombin. Ultraviolet different spectroscopy and circular dichroism studies. Biochemistry 17: 3339–3344.

    Article  PubMed  CAS  Google Scholar 

  128. Olson, S.T. and Shore, J.D. (1981) Binding of high affinity heparin to antithrombin III. Characterization of the protein fluorescence enhancement. J. Biol. Chem. 256: 11065–11072.

    PubMed  CAS  Google Scholar 

  129. Gettins, P. (1987) Antithrombin III and its interaction with heparin. Comparison of the human, bovine, and porcine proteins by 1H NMR spectroscopy. Biochemistry 26: 1391–1398.

    Article  PubMed  CAS  Google Scholar 

  130. Fan, B., Turko, I.V. and Gettins, P.G.W. (1994) Antithrombin histidine variants.1H NMR resonance assignments and functional properties. FEBS Lett. 354: 84–88.

    Article  PubMed  CAS  Google Scholar 

  131. Gettins, P.G.W., Fan, B., Crews, B.C., Turko, I.V., Olson, S.T. and Streusand, V.J. (1993) Transmission of conformational change from the heparin binding site to the reactive center of antithrombin. Biochemistry 32: 8385–8389.

    Article  PubMed  CAS  Google Scholar 

  132. Olson, S.T., Halvorson, H.R. and Björk, I. (1991) Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J. Biol. Chem. 266: 6342–6352.

    PubMed  CAS  Google Scholar 

  133. Gan, Z.-R., Li, Y., Chen, Z., Lewis, S.D. and Shafer, J.A. (1994) Identification of basic amino acid residues in thrombin essential for heparin-catalyzed inactivation by antithrombin III. J. Biol. Chem. 269: 1301–1305.

    PubMed  CAS  Google Scholar 

  134. Sheehan, J.P. and Sadler, J.E. (1994) Molecular mapping of the heparin-binding exosite of thrombin. Proc. Natl. Acad. Sci. U. S. A. 91: 5518–5522.

    Article  PubMed  CAS  Google Scholar 

  135. Jordan, R.E., Oosta, G.M., Gardner, W.T. and Rosenberg, R.D. (1980) The binding of low molecular weight heparin to hemostatic enzymes. J. Biol. Chem. 255: 10073–10080.

    PubMed  CAS  Google Scholar 

  136. Olson, S.T. and Shore, J.D. (1986) Transient kinetics of heparin-catalyzed protease inactivation by anti-thrombin III. The reaction step limiting heparin turnover in thrombin neutralization. J. Biol. Chem. 261: 13151–13159.

    PubMed  CAS  Google Scholar 

  137. Laurent, T.C., Tengblad, A., Thunberg, L., Höök, M. and Lindahl, U. (1978) The molecular-weight-dependence of the anti-coagulant activity of heparin. Biochem. J. 175: 691–701.

    PubMed  CAS  Google Scholar 

  138. Pomerantz, M.W. and Owen, W.G. (1978) A catalytic role for heparin. Evidence for a temary complex of heparin cofactor, thrombin, and heparin. Biochim. Biophys. Acta 535: 66–77.

    Article  PubMed  CAS  Google Scholar 

  139. Oosta, G.M., Gardner, W.T., Beeler, D.L. and Rosenberg, R.D. (1981) Multiple functional domains of the heparin molecule. Proc. Natl. Acad. Sci. U. S. A. 78: 829–833.

    Article  PubMed  CAS  Google Scholar 

  140. Holmer, E., Kurachi, K. and Söderstrom, G. (1981) The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, factor Xa, factor IXa, factor XIa, factor XIIa and kallikrein by antithrombin. Biochem. J. 193:395–400.

    PubMed  CAS  Google Scholar 

  141. Nesheim, M.E. (1983) A simple rate law that describes the kinetics of the heparin-catalyzed reaction between antithrombin III and thrombin. J. Biol. Chem. 258: 14708–14717.

    PubMed  CAS  Google Scholar 

  142. Hoylaerts, M., Owen, W.G. and Collen, D. (1984) Involvement of heparin chain length in the heparin-catalyzed inhibition of thrombin by antithrombin III. J. Biol. Chem. 259: 5670–5677.

    PubMed  CAS  Google Scholar 

  143. Danielsson,A., Raub, E., Lindahl, U. and Björk, I. (1986) Role of ternary complexes, in which heparin binds both antithrombin and proteinase, in the acceleration of the reactions between antithrombin and thrombin or factor Xa. J. Biol. Chem. 261: 15467–15473.

    Google Scholar 

  144. Thunberg, L., Lindahl, U., Tengblad, A., Laurent, T.C. and Jackson, C.M. (1979) On the molecular-weight dependence of the anticoagulant activity of heparin. Biochem. J. 181: 241–243.

    PubMed  CAS  Google Scholar 

  145. Lane, D.A., Denton, J., Flynn, A.M., Thunberg, L. and Lindahl, U. (1984) Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem. J. 218: 725–732.

    PubMed  CAS  Google Scholar 

  146. Ellis, V., Scully, M.F. and Kakkar, V.V. (1986) The relative molecular mass dependence of the anti-factor Xa properties of heparin. Biochem. J. 238: 329–333.

    PubMed  CAS  Google Scholar 

  147. Björk, I. and Nordenman, B. (1976) Acceleration of the reaction between thrombin and antithrombin III by non-stoichiometric amounts of heparin. Eur. J. Biochem. 68: 507–511.

    Article  PubMed  Google Scholar 

  148. Griffith, M.J. (1982) The heparin-enhanced antithrombin IlUthrombin reaction is saturable with respect to both thrombin and antithrombin III. J. Biol. Chem. 257: 13899–13302.

    PubMed  CAS  Google Scholar 

  149. Pletcher, C.H. and Nelsestuen, G.L. (1983) Two-substrate reaction model for the heparin-catalyzed bovine antithrombin/protease reaction. J. Biol. Chem. 258: 1086–1091.

    PubMed  CAS  Google Scholar 

  150. Evington, J.R., Feldman, P.A., Luscombe, M. and Holbrook, J.J. (1986) The catalysis by heparin of the reaction between thrombin and antithrombin. Biochim. Biophys. Acta 870: 92–101.

    Article  PubMed  CAS  Google Scholar 

  151. Fuchs, H.E. and Pizzo, S.V. (1983) Regulation of factor Xa in vitro in human and mouse plasma and in vivo in mouse. Role of the endothelium and plasma proteinase inhibitors. J. Clin. Invest. 72: 2041–2049.

    Article  PubMed  CAS  Google Scholar 

  152. Fuchs, H.E., Trapp, H.G., Griffith, M.J., Roberts, H.R. and Pizzo, S.V. (1984) Regulation of factor IXa in vitro in human and mouse plasma and in vivo in the mouse. Role of the endothelium and the plasma proteinase inhibitors. J. Clin. Invest. 73: 1696–1703.

    Article  PubMed  CAS  Google Scholar 

  153. Gitel, S.N., Medina, V.M. and Wessler, S. (1984) Inhibition of human activated Factor X by antithrombin III and alpha 1-proteinase inhibitor in human plasma. J. Biol. Chem. 259: 6890–6895.

    PubMed  CAS  Google Scholar 

  154. Jesty, J. (1986) The kinetics of inhibition of alpha-thrombin in human plasma. J. Biol. Chem. 261: 10313–10318.

    PubMed  CAS  Google Scholar 

  155. Lawson, J.H., Butenas, S., Ribarik, N. and Mann, K.G. (1993) Complex-dependent inhibition of factor Vlla by antithrombin III and heparin. J. Biol. Chem. 268: 767–770.

    PubMed  CAS  Google Scholar 

  156. Olson, S.T., Sheffer, R. and Francis, A.M. (1993) High molecular weight kininogen potentiates the heparin-accelerated inhibition of plasma kallikrein by antithrombin: Role for antithrombin in the regulation of kallikrein. Biochemistry 32: 12136–12147.

    Article  PubMed  CAS  Google Scholar 

  157. Olson, S.T., Sheffer, R. and Shore, J.D. (1994) Parallel procoagulant and anticoagulant pathways for high molecular weight kininogen coagulant function. Agents Actions Suppl. 38: 241–248.

    Google Scholar 

  158. . Egeberg, 0. (1965) Inherited antithrombin deficiency causing thrombophilia. Thromb. Diath. Haemorrh. 13: 516–530.

    Google Scholar 

  159. Abildgaard, U. (1981) Antithrombin and related inhibitors of blood coagulation. Recent Adv. Blood Coag. 3: 151–173.

    CAS  Google Scholar 

  160. Lane, D.A., Ireland, H., Olds, R.J., Thein, S.L., Perry, D.J. and Aiach, M. (1991) Antithrombin III: a database of mutations. Thromb. Haemost. 66: 657–661.

    PubMed  CAS  Google Scholar 

  161. Lane, D.A., Olds, R.J., Boisclair, M., Chowdhury, V., Thein, S.L., Cooper, D.N., Blajchman, M., Perry, D., Emmerich, J. and Aiach, M. (1993) Antithrombin III mutation database: First Update. Thromb. Haemost. 70: 361–369.

    PubMed  CAS  Google Scholar 

  162. De Agostini, A.I., Watkins, S.C., Slayter, H.S., Youssoufian, H. and Rosenberg, R.D. (1990) Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta. J. Cell Biol. 111: 1293–1304.

    Article  PubMed  Google Scholar 

  163. Felsch, J.S. and Owen, W.G. (1994) Endogenous antithrombin associated with microvascular endothelium. Quantitative analysis in perfused rat hearts. Biochemistry 33: 818–822.

    Article  PubMed  CAS  Google Scholar 

  164. Marcum, J.A. and Rosenberg, R.D. (1984) Anticoagulantly active heparin-like molecules from vascular tissue. Biochemistry 23: 1730–1737.

    Article  PubMed  CAS  Google Scholar 

  165. Marcum, J.A., Atha, D.H., Fritze, L.M., Nawroth, P., Stern, D. and Rosenberg, R.D. (1986) Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan. J. Biol. Chem. 261: 7507–7517.

    PubMed  CAS  Google Scholar 

  166. Witmer, M.R. and Hatton, M.W. (1991) Antithrombin III-beta associates more readily than antithrombin III-alpha with uninjured and de-endothelialized aortic wall in vitro and in vivo. Arterioscler. Thromb. 11: 530–539.

    Article  PubMed  CAS  Google Scholar 

  167. Preissner, K.T., Delvos, U. and Muller-Berghaus, G. (1987) Binding of thrombin to thrombomodulin accelerates inhibition of the enzyme by antithrombin III. Evidence for a heparin-independent mechanism. Biochemistry 26: 2521–2528.

    Article  PubMed  CAS  Google Scholar 

  168. Bourin, M.C., Ohlin, A.K., Lane, D.A., Stenflo, J. and Lindahl, U. (1988) Relationship between anticoagulant activities and polyanionic properties of rabbit thrombomodulin. J. Biol. Chem. 263: 8044–8052.

    PubMed  CAS  Google Scholar 

  169. Bourin, M.C. and Lindahl, U. (1990) Functional role of the polysaccharide component of rabbit thrombomodulin proteoglycan. Effects on inactivation of thrombin by antithrombin, cleavage of fibrinogen by thrombin and thrombin-catalysed activation of factor V. Biochem. J. 270: 419–425.

    PubMed  CAS  Google Scholar 

  170. Miletich, J.P., Jackson, C.M. and Majerus, P.W. (1978) Properties of the factor Xa binding site on human platelets. J. Biol. Chem. 253: 6908–6916.

    PubMed  CAS  Google Scholar 

  171. Schoen, P. and Lindhout, T. (1987) The in situ inhibition of prothrombinase-formed human alpha-thrombin and meizothrombin(des FI) by antithrombin III and heparin. J. Biol. Chem. 262: 11268–11274.

    PubMed  CAS  Google Scholar 

  172. Hogg, P.J. and Jackson, C.M. (1989) Fibrin monomer protects thrombin from inactivation by heparinantithrombin III: implications for heparin efficacy. Proc. Natl. Acad. Sci. U. S. A. 86: 3619–3623.

    Article  PubMed  CAS  Google Scholar 

  173. Eisenberg, P.R., Siegel, J.R., Abendschein, D.R. and Miletich, J.P. (1993) Importance of Factor Xa in determining the procoagulant activity of whole-blood clots. J. Clin. Invest. 91: 1877–1883.

    Article  PubMed  CAS  Google Scholar 

  174. Jochum, M., Lander, S., Heimburger, N. and Fritz, H. (1981) Effect of human granulocytic elastase on isolated human antithrombin III. Hoppe-Seyler's Z. Physiol. Chem. 362: 103–112.

    Article  PubMed  CAS  Google Scholar 

  175. Jordan, R.E., Kilpatrick, J. and Nelson, R.M. (1987) Heparin promotes the inactivation of antithrombin by neutrophil elastase. Science 237: 777–779.

    Article  PubMed  CAS  Google Scholar 

  176. Jordan, R.E., Nelson, R.M., Kilpatrick, J., Newgren, J.O., Esmon, P.C. and Fournel, M.A. (1989) Inactivation of human antithrombin by neutrophil elastase. Kinetics of the heparin-dependent reaction. J. Biol. Chem. 264: 10493–10500.

    PubMed  CAS  Google Scholar 

  177. Carrell, R.W. and Owen, M.C. (1985) Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 317: 730–732.

    Article  PubMed  CAS  Google Scholar 

  178. Mast, A.E., Enghild, J.J., Nagase, H., Suzuki, K., Pizzo, S.V. and Salvesen, G. (1991) Kinetics and physiologic relevance of the inactivation of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1(tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J. Biol. Chem. 266: 15810–15816.

    PubMed  CAS  Google Scholar 

  179. Hayaishi, M. and Yamada, K.M. (1982) Divalent cation modulation of fibronectin binding to heparin and to DNA. J. Biol. Chem. 257: 5263–5267.

    Google Scholar 

  180. Lijnen, H.R., Hoylaerts, M. and Collen, D. (1983) Heparin binding properties of human histidine-rich glycoprotein. Mechanism and role in the neutralization of heparin in plasma. J. Biol. Chem. 258: 3803–3808.

    PubMed  CAS  Google Scholar 

  181. Lane, D.A., Pejler, G., Flynn, A.M., Thompson, E.A. and Lindahl, U. (1986) Neutralization of heparin-related saccharides by histidine-rich glycoprotein and platelet factor 4. J. Biol. Chem. 261: 3980–3986.

    PubMed  CAS  Google Scholar 

  182. Björk, I., Olson, S.T., Sheffer, R.G. and Shore, J.D. (1989) Binding of heparin to human high molecular weight kininogen. Biochemistry 28: 1213–1221.

    Article  PubMed  Google Scholar 

  183. Young, E., Prins, M., Levine, M.N. and Hirsh, J. (1992) Heparin binding to plasma proteins, an important mechanism for heparin resistance. Thromb. Haemost. 67: 639–643.

    PubMed  CAS  Google Scholar 

  184. Barrowcliffe, T.W., Merton, R.E., Havercroft, S.J., Thunberg, L., Lindahl, U. and Thomas, D.P. (1984) Low-affinity heparin potentiates the action of high-affinity heparin oligosaccharides. Thromb. Res. 34: 125–133.

    Article  PubMed  CAS  Google Scholar 

  185. Kraulis, P.J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24: 946–950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björk, I., Olson, S.T. (1997). Antithrombin. In: Church, F.C., Cunningham, D.D., Ginsburg, D., Hoffman, M., Stone, S.R., Tollefsen, D.M. (eds) Chemistry and Biology of Serpins. Advances in Experimental Medicine and Biology, vol 425. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5391-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5391-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7461-9

  • Online ISBN: 978-1-4615-5391-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics