Skip to main content

The Significance of Serpins in the Regulation of Proteases in the Male Genital Tract

  • Chapter
Book cover Chemistry and Biology of Serpins

Abstract

The male genital tract is rich in proteases, delivered by the male accessory sex glands, that are delicately balanced in their action by serpins, non-serpin class protease inhibitors and other regulatory mechanisms. Still, the biological function of the serpins and their target enzymes in the male genital tract and possible involvement in the regulation of normal reproductive function mainly remains to be elucidated. However, it is important with careful control of the catalytic activity of serine proteases, in particular in the different extracellular compartments, where they may produce significant potential hazards for biological structures. Immunochemical measurements of the serine protease prostate-specific antigen (PSA) in serum have gained widespread use in the monitoring and detection of prostate cancer. Moreover, the rapidly growing body of data on the disease-related variations in the proportion of different forms of PSA in serum which relate to the covalent complex formation between the serpin α1-antichymotrypsin and PSA has significantly improved the diagnostic specificity in blood testing for early detection of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riegman PH, Vlietstra RJ, Klaassen P, van der Korput J, Geurts van Kessel A, Romijn J, Trapman J. The prostate-specific antigen gene and the human glandular kallikrein-1 gene are tandemly located on chromosome 19. FEBS Lett 1989; 247: 123–126.

    Article  PubMed  CAS  Google Scholar 

  2. Papsidero LD, Wang MC, Valenzuela LA, Murphy GP, Chu TM. A prostate antigen in sera of prostatic cancer patients. Cancer Res 1980; 40: 2428–2432.

    PubMed  CAS  Google Scholar 

  3. Nadji M, Tabei SZ, Castro A, Chu TM, Murphy GP, Wang MC and Morales AR. Prostate-specific antigen: An immunohistologic marker for prostatic neoplasms. Cancer 1981; 48: 1229–1232.

    Article  PubMed  CAS  Google Scholar 

  4. Qiu S-D, Young CY-F, Bilhartz DL, Prescott JL, Farrow GM, He WW and Tindall DJ. In situhybridization of prostate-specific antigen mRNA in human prostate. J Urol 1990; 144: 1550–1556.

    PubMed  CAS  Google Scholar 

  5. Henttu P, Lukkarinen O, Vihko R. Expression of the gene coding for human prostate-specific antigen and related hGK-I in benign and malignant tumors of the human prostate. Int J Cancer 1990; 45: 654–660.

    Article  PubMed  CAS  Google Scholar 

  6. Riegman PH, Vlietstra RJ, van der Korput J, Brinkmann AO, Trapman J. The promotor of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinology 1991; 5: 1921–1930.

    Article  CAS  Google Scholar 

  7. Henttu P, Liao S, Vihko P. Androgens up-regulate the human prostate-specific antigen messenger ribonucleic acid (mRNA), but down-regulate the prostatic acid phosphatase mRNA in the LNCaP cell line. Endocrinology 1992; 130: 766–772.

    Article  PubMed  CAS  Google Scholar 

  8. Yu H, Diamandis EP, Sutherland DJ. Immunoreactive prostate-specific antigen levels in female and male breast tumors and its association with steroid hormone receptors and patient age. Clin Biochem 1994; 27: 75–79.

    Article  PubMed  CAS  Google Scholar 

  9. Clements J, Mukhtar A. Glandular kallikreins and prostate-specific antigen are expressed in the human endometrium. J Clin Endocrin Metab 1994, 78: 1536–1539.

    Article  CAS  Google Scholar 

  10. Wang MC, Valenzuela LA, Murphy GP, Chu TM. Purification of a human prostate specific antigen. Invest Urol 1979; 17: 159–163.

    PubMed  CAS  Google Scholar 

  11. Lilja H and Abrahamsson P-A. Three predominant proteins secreted by the human prostate gland. The Prostate 1988; 12: 29–38.

    Article  PubMed  CAS  Google Scholar 

  12. Bélanger A, van Halbeek H, Graves HC, Grandbois K, Stamey TA, Huang L, Poppe I, Labrie F. Molecular mass and carbohydrate structure of prostate specific antigen: Studies for establishment of an international PSA standard. The Prostate 1995; 27: 187–197.

    Article  PubMed  Google Scholar 

  13. Lundwall Å and Lilja H. Molecular cloning of human prostate specific antigen cDNA. FEBS Lett 1987, 214: 317–322.

    Article  PubMed  CAS  Google Scholar 

  14. Lundwall Å. Characterization of the gene for prostate-specific antigen, a human glandular kallikrein. Biochem Biophys Res Comm 1989; 161: 1151–1159.

    Article  PubMed  CAS  Google Scholar 

  15. Watt K, Lee P-J, M’Timkulu T, Chan W-P and Loor R. Human prostate-specific antigen: Structural and functional similarity with serine proteases. Proc Natl Acad Sci USA 1986; 83: 3166–3170.

    Article  PubMed  CAS  Google Scholar 

  16. Lilja H. A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J Clin Invest 1985; 76: 1899–1903.

    Article  PubMed  CAS  Google Scholar 

  17. Lilja H, Oldbring J, Rannevik G and Laurell C-B. Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen. J Clin Invest 1987; 80: 281–285.

    Article  PubMed  CAS  Google Scholar 

  18. Lilja H, Lundwall Å. Molecular cloning of epididymal and seminal vesicular transcripts encoding a semenogelin related protein. Proc Natl Acad Sci USA 1992; 89: 4559–4563.

    Article  PubMed  CAS  Google Scholar 

  19. McGee R and Herr J. Human seminal vesicle-specific antigen is a substrate for prostate-specific antigen (or P-30). Biol Reprod 1988; 39: 499–510.

    Article  PubMed  CAS  Google Scholar 

  20. Lilja H, Laurell C-B. Liquefaction of coagulated human semen. Scand J Clin Lab Invest 1984; 44: 447–452.

    Article  PubMed  CAS  Google Scholar 

  21. McGee R, Herr J. Human seminal vesicle-specific antigen during semen liquefaction. Biol Reprod 1987; 37: 431–439.

    Article  PubMed  CAS  Google Scholar 

  22. Christensson A, Laurell C-B, Lilja H. Enzymatic activity of Prostate-specific antigen and its reactions with extracellular serine proteinase inhibitors. Eur J Biochem 1990; 194: 755–763.

    Article  PubMed  CAS  Google Scholar 

  23. Morris BJ. hGK-1: A kallikrein gene expressed in human prostate. Clin Exp Pharm Phys 1989; 16: 345–351.

    Article  CAS  Google Scholar 

  24. Schedlich LJ, Bennetts B and Morris BJ. Primary structure of a human glandular kallikrein gene. DNA 1987; 6: 429–437.

    Article  PubMed  CAS  Google Scholar 

  25. Young CY-F, Andrews PE, Montgomery BT, Tindall DJ. Tissue-specific and hormonal regulation of human prostate-specific glandular kallikrein. Biochemistry 1992; 31: 818–824.

    Article  PubMed  CAS  Google Scholar 

  26. Chapdelaine P, Paradis G, Tremblay RR, Dubé JY. High level of expression in the prostate of a human glandular kallikrein mRNA related to prostate-specific antigen. FEBS Lett 1988; 236: 205–208.

    Article  PubMed  CAS  Google Scholar 

  27. Deperthes D, Chapdelaine P, Tremblay R, Brunet C, Berton J, Hébert J, Lazure C, Dube J. Isolation of pro-static kallikrein hK2, also known as hGK-I, in human seminal plasma. Biochimica et Biophysica Acta 1995; 1245: 311–316.

    Article  PubMed  Google Scholar 

  28. Lövgren J, Piironen T, övermo C, Dowell B, Karp M, Pettersson K, Lilja H, Lundwall Å. Production of recombinant PSA and hK2 and analysis of their immunologic cross-reactivity. Biochem Biophys Res Commun 1995; 213: 888–895.

    Article  PubMed  Google Scholar 

  29. Piironen T, Lövgren J, Karp M, Eerola R, Lundwall Å, Dowell B, Lövgren T, Lilja H, Pettersson K. Immunofluorometric assay for sensitive and specific measurement of human prostatic glandular kallikrein (hK2) in serum. Clin Chem 1996; 42. In press.

    Google Scholar 

  30. Baba T, Watanabe K, Kashiwabara S, Arai Y. Primary structure of human proacrosin deduced from its cDNA sequence. FEBS Lett 1989; 244: 296–300.

    Article  PubMed  CAS  Google Scholar 

  31. Adham I, Grzeschik K, Geurts van Kessel A, Engel W. The gene encoding the human preproacrosin (ACR) maps to the ql3-qter region on chromosome 22. Hum Genet 1989; 84: 59–62.

    Article  PubMed  CAS  Google Scholar 

  32. Keime S, Adham I, Engel W. Nucleotide sequence and exon-intron organization of the human proacrosin gene. Eur J Biochem 1990; 190: 195–200.

    Article  PubMed  CAS  Google Scholar 

  33. Phi-van L, Muller-Esterl W, Flörke S, Schmid M, Engel W. Proacrosin and the differentiation of the spermatozoa. Biol Reprod 1983; 29: 479–486.

    Article  PubMed  CAS  Google Scholar 

  34. Polakoski K, McRorie R. Boar acrosin II. Classification, inhibition, and specificity studies of a proteinase from sperm acrosomes. J Biol Chem 1973; 248: 8183–8188.

    PubMed  CAS  Google Scholar 

  35. Schleuning W, Fritz H. Some characteristics of highly purified boar sperm acrosin. Hoppe-Seyler’s Z Physiol Chem 1974; 355: 125–130.

    Article  PubMed  CAS  Google Scholar 

  36. Fock-Nüzel R, Lottspeich F, Henschen A, Müller-Esterl W. Boar acrosin is a two-chain molecule. Isolation and primary structure of the light chain; homology with the pro-part of other serine proteinases. Eur J Biochem 1984; 141: 441–446.

    Article  PubMed  Google Scholar 

  37. Baba T, Michikawa Y, Kawakura k, Arai Y. Activation of boar proacrosin is effected by processing at both N- and C-terminal portions of the zymogen molecule. FEBS Lett 1989; 244: 132–136.

    Article  PubMed  CAS  Google Scholar 

  38. Baba T Kashiwabara S, Watanabe K, Itho H, Michikawa Y, Kimura K, Takada M, Fukamizu A, Arai Y. Activation and maturation mechanisms of boar acrosin zymogen based on the deduced primary structure. J Biol Chem 1989; 264: 11920–11927.

    PubMed  Google Scholar 

  39. Rabin M, Watson M, Kidd V, Woo SLC, Breg RW, Ruddle FH. Regional location of a1-antichymotrypsin and a1-antitrypsin genes on human chromosome 14. Somatic Cell Mol Genet 1986; 12: 209–214.

    Article  CAS  Google Scholar 

  40. Bao J, Sifers RN, Kidd VJ, Ledley FD, Woo SLC. Molecular evolution of serpins: Homologous structure of the human a1-antichymotrypsin and acantitrypsin. Biochemistry 1987; 26: 7755–7759.

    Article  PubMed  CAS  Google Scholar 

  41. Chandra T, Stackhouse R, Kidd VJ, Robson KJH, Woo SLC. Sequence homology between human a1-antichymotrypsin, a1-antitrypsin, and antithrombin III. Biochemistry 1983; 22: 5055–5061.

    Article  PubMed  CAS  Google Scholar 

  42. Sefton L, Kelsey G, Kearney P, Povey S, Wolfe J. A physical map of the human PI and AACT genes. Genomics 1990; 7: 382–388.

    Article  PubMed  CAS  Google Scholar 

  43. Hachulla E, Laine A, Hayem A. a1-antichymotrypsin microheterogeneity in crossed immunoaffinoelectrophoresis with free concanavalin A: a useful diagnostic tool in inflammatory syndrome. Clin Chem 1988; 34: 911–915.

    PubMed  CAS  Google Scholar 

  44. Lindmark B, Lilja H, Alm R, Eriksson S. The microheterogeneity of desialylated a1-antichymotrypsin: the occurrence of two amino-terminal isoforms, one lacking a His-Pro dipeptide. Biochim Biophys Acta 1989; 997: 90–95.

    Article  PubMed  CAS  Google Scholar 

  45. Baumann U, Huber R, Bode W, Grosse D, Lesjak M, Laurell C-B. Crystal structure of cleaved human a1-antichymotrypsin at 2.7 Å resolution and its comparison with other serpins. J Mol Biol 1991; 218: 595–606.

    Article  PubMed  CAS  Google Scholar 

  46. Travis J, Bowen J, Baugh R. Human a1-antichymotrypsin: Interaction with chymotrypsin-like proteinases. Biochemistry 1978; 17: 5651–5656.

    Article  PubMed  CAS  Google Scholar 

  47. Laine A, Davril M, Rabaud M, Vercaigne-Marko D, Hayem A. (1985) Human serum a1-antichymotrypsin is an inhibitor of pancreatic elastases. Eur J Biochem 1985; 151: 327–331.

    Article  PubMed  CAS  Google Scholar 

  48. Perlmutter DH, Dinarello CA, Punsal PI, Colten HR. Cachectin/tumor necrosis factor regulates hepatic acute-phase gene expression. J Clin Invest 1986; 78: 1349–1354.

    Article  PubMed  CAS  Google Scholar 

  49. Berninger RW. Alphal-antichymotrypsin. Journal of Medicine 1985; 16: 101–128.

    PubMed  CAS  Google Scholar 

  50. Papadimitriou CS, Stein H, Papacharalampous NX. Presence of a1-antichymotrypsin and a1-antitrypsin in haematopoietic and lymphoid tissue cells as revealed by the immunoperoxidase method. Pathol Res Pract 1980; 169: 287–297.

    Article  PubMed  CAS  Google Scholar 

  51. Kittas C, Aroni K, Matani A, Papadimitriou CS. Immunocytochemical demonstration of a1-antitrypsin and a1-antichymotrypsin in human gastrointestinal tract. Hepato-gastroenterol 1982; 29: 275–277.

    CAS  Google Scholar 

  52. Permanetter W, Meister P. Distribution of lysozyme (muramidase) and ai-antichymotrypsin in normal and neoplastic epithelial tissues: A survey. Acta Histochem 1984; 74: 173–179.

    Article  PubMed  CAS  Google Scholar 

  53. Nathrath WB, Meister P. Lysozyme (muramidase) and a1-antichymotrypsin as immunohistochemical tumour markers. Acta Histochem suppl 1982; 25: 69–72.

    PubMed  CAS  Google Scholar 

  54. Bergman D, Kadner S, Cruz M, Esterman A, Tahery M, Young B, Finlay T. Synthesis of alpha-1 -antichymotrypsin and alpha- 1 -antitrypsin by human trophoblast. Pediatr Res 1993; 34: 312–317.

    Article  PubMed  CAS  Google Scholar 

  55. Bjartell A, Björk T, Matikainen M-T, Abrahamsson P-A, di Sant’Agnese A, Lilja H. Production of alpha-lantichymotrypsin by PSA-containing cells of human prostate epithelium. Urology 1993; 42: 502–510.

    Article  PubMed  CAS  Google Scholar 

  56. Björk T, Bjartell A, Abrahamsson P-A, Hulkko S, di Sant’agnese A, Lilja H. Alphal-antichymotrypsin production in PSA-producing cells is common in prostatic cancer but rare in benign prostatic hyperplasia. Urology 1994; 43: 427–434.

    Article  PubMed  Google Scholar 

  57. Schill W-B, Wallner O, Palm S, Fritz H. Kinin stimulation of spermatozoa motility and migration in cervical mucus. In: Human semen and fertility regulation in man. (ed Hafez ES) Mosby. St Louis. 1976 pp 442–451.

    Google Scholar 

  58. Aronsen K-F, Ekelund G, Kindmark C-O, Laurell C-B. Sequential changes of plasma proteins after surgical trauma. Scand J Lab Invest 1972; 29 suppl 124: 127–136.

    Google Scholar 

  59. Meijers JCM, Kanters DH, Vlooswijk RA, van Erp HE, Hessing M, Bouma BN. Inactivation of human plasma kallikrein and factor XIa by protein C inhibitor. Biochemistry 1988; 27: 4231–4237.

    Article  PubMed  CAS  Google Scholar 

  60. Billingsley G, Walter M, Hammond G, Cox D. Physical mapping of four serpin genes: alpha 1-antitrypsin, alpha I -antichymotrypsin, corticosteroid-binding globulin, and protein C inhibitor, within a 280 kb region on chromosome 14q32.1. Am J Hum Genet 1993; 52: 343–353.

    PubMed  CAS  Google Scholar 

  61. Long GL, Chandra T, Woo SLC, Davie EW, Kurachi K. Complete sequence of the eDNA for human a1 -antitrypsin and the gene for the S variant. Biochemistry 1984; 23: 4828–4837.

    Article  PubMed  CAS  Google Scholar 

  62. Suzuki K, Nishioka J, Hashimoto S. Protein C inhibitor. Purification from human plasma and characterization. J Biol Chem 1983; 258: 163–168.

    PubMed  CAS  Google Scholar 

  63. Suzuki K, Deyashiki Y, Nishioka J, Kurachi K, Akira M, Yamamoto S, Hashimoto S. Characterization of a cDNA for human protein C inhibitor. A new member of the plasma serine protease inhibitor superfamily. J Biol Chem 1987; 262: 611–616.

    PubMed  CAS  Google Scholar 

  64. Laurell M, Stenflo J. Protein C inhibitor from human plasma: Characterization of native and cleaved inhibitor and demonstration of inhibitor complexes with plasma kallikrein. Thromb Haemostas 1989; 62: 885–891.

    CAS  Google Scholar 

  65. Marlar RA, Griffin JH. Deficiency of protein C inhibitor in combined Factor V/VIII deficiency disease. J Clin Invest 1980; 66: 1186–1189.

    Article  PubMed  CAS  Google Scholar 

  66. Suzuki K, Stenflo J, Dahlbäck B, Teodorsson B. Inactivation of human coagulation Factor V by activated protein C. J Biol Chem 1983; 258: 1914–1920.

    PubMed  CAS  Google Scholar 

  67. Esmon CT. The regulation of natural anticoagulant pathways. Science 1987; 235: 1348–1352.

    Article  PubMed  CAS  Google Scholar 

  68. Suzuki K, Nishioka J, Kusumoto H, Hashimoto S. Mechanism of inhibition of activated protein C by protein C inhibitor. J Biochem 1984; 95: 187–195.

    PubMed  CAS  Google Scholar 

  69. España F, Berrettini M, Griffin JH. Purification and characterization of plasma protein C inhibitor. Thromb Res 1989; 55: 369–384.

    Article  PubMed  Google Scholar 

  70. Ecke S, Geiger M, Resch I, Jerabek I, Sting L, Maier M, Binder BR. Inhibition of tissue kallikrein by protein C inhibitor. Evidence for identity of protein C inhibitor with the kallikrein binding protein. J Biol Chem 1992; 267: 7048–7052.

    PubMed  CAS  Google Scholar 

  71. Geiger M, Huber K, Wojta J, Stingl L, España F, Griffin JH, Binder BR. Complex formation between urokinase and plasma protein C inhibitor in vitroand in vivo. Blood 1989; 74: 722–728.

    PubMed  CAS  Google Scholar 

  72. Hermans J, Jones R, Stone SR. Rapid inhibition of the sperm protease acrosin by protein C inhibitor. Biochemistry 1994; 33: 5440–5444.

    Article  PubMed  CAS  Google Scholar 

  73. Zheng X, Geiger M, Ecke S, Bielek E, Donner P, Eberspacher U, Schleuning W, Binder B. Inhibition of acrosin by protein C inhibitor and localization of protein C inhibitor to spermatozoa. Am J Physiol 1994; 267: C466–472.

    PubMed  CAS  Google Scholar 

  74. Christensson A, Lilja H. Complex formation between Protein C Inhibitor and Prostate-specific antigen in vitroand in human semen. Eur J Biochem 1994; 220: 45–53.

    Article  PubMed  CAS  Google Scholar 

  75. Taylor G, Yorke S, Harding D. Glycosaminoglycan specificity of a heparin-binding peptide. Pept Res 1995; 8: 286–293.

    PubMed  CAS  Google Scholar 

  76. Laurell M, Christensson A, Abrahamsson P-A, Stenflo J, Lilja H. Protein C inhibitor in human body fluids. Seminal plasma is rich in inhibitor antigen deriving from cells throughout the male reproductive system. J Clin Inv 1992; 89: 1094–1101.

    Article  CAS  Google Scholar 

  77. Espana, F., Gilabert, J., Estelles, A., Romeu, A., Aznar, J. & Cabo, A. Functionally active protein C inhibitor/plasminogen activator inhibitor-3 (PCI/PAI-3) is secreted in seminal vesicles, occurs at high concentrations in human seminal plasma and complexes with prostate-specific antigen. Thromb Res 1991; 64: 309–320.

    Article  PubMed  CAS  Google Scholar 

  78. Kan C-C, Solomon E, Belt KT, Chain AC, Hiorns LR, Fey G. Nucleotide sequence of cDNA encoding human a2-macroglobulin and assignment of the chromosomal locus. Proc Natl Acad Sci USA 1985; 82: 2282–2286.

    Article  PubMed  CAS  Google Scholar 

  79. Barrett AJ, Starkey PM. The interaction of a2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J 1973; 133: 709–724.

    PubMed  CAS  Google Scholar 

  80. Feldman SR, Gonias SL, Pizzo SV. Model of a2-macroglobulin structure and function. Proc Natl Acad Sci USA 1985; 82: 5700–5704.

    Article  PubMed  CAS  Google Scholar 

  81. Sottrup-Jensen L. a-macroglobulins: Structure, shape, and mechanism of proteinase complex formation. J Biol Chem 1989; 264: 11539–11542.

    PubMed  CAS  Google Scholar 

  82. Björk I, Fish WW. Evidence for similar conformational changes in a2 macroglobulin on reaction with primary amines or proteolytic enzymes. Biochem J 1982; 207: 347–356.

    PubMed  Google Scholar 

  83. Kaplan J, Nielsen ML. Analysis of macrophage surface receptors. Binding of a-macroglobulin•protease complexes to rabbit alveolar macrophages. J Biol Chem 1979; 254: 7323–7328.

    PubMed  CAS  Google Scholar 

  84. Gliemann J, Röll Larsen T, Sottrup-Jensen L. Cell association and degradation of a2-macroglobulin-trypsin complexes in hepatocytes and adipocytes. Biochim Biophys Acta 1983; 756: 230–237.

    Article  PubMed  CAS  Google Scholar 

  85. Kristensen T, Moestrup SK, Gliemann J, Bendtsen L, Sand O, Sottrup-Jensen L. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the a2-macroglobulin receptor. FEBS Lett 1990; 276: 151–155.

    Article  PubMed  CAS  Google Scholar 

  86. Imber MJ, Pizzo SV. Clearance and binding of two electrophoretic fast forms of human a2-macroglobulin. J Biol Chem 1981; 256: 8134–8139.

    PubMed  CAS  Google Scholar 

  87. Laurell C-B, Jeppsson J-O. Protease inhibitors in plasma. In Plasma proteins. (ed Putnam FV) Academic Press, Inc, New York. 1975; pp 229–264.

    Google Scholar 

  88. Mosher DF, Saksela O, Vaheri A. Synthesis and secretion of a2-macroglobulin by cultured adherent lung cells. J Clin Invest 1977; 60: 1036–1045.

    Article  PubMed  CAS  Google Scholar 

  89. Sottrup-Jensen L, Folkersen J, Kristensen T, Tack BF. Partial primary structure of human pregnancy zone protein: Extensive sequence homology with human a2-macroglobulin. Proc Natl Acad Sci USA 1984; 81: 7353–7357.

    Article  PubMed  CAS  Google Scholar 

  90. Sand O, Folkersen J, Westergaard JG, Sottrup-Jensen L. Characterization of human pregnancy zone protein. J Biol Chem 1985; 260: 15723–15735.

    PubMed  CAS  Google Scholar 

  91. Christensen U, Simonsen M, Harrit N, Sottrup-Jensen L. Pregnancy zone protein, a proteinase-binding macroglobulin. Interactions with proteinases and methylamine. Biochemistry 1989; 28: 9324–9331.

    Article  PubMed  CAS  Google Scholar 

  92. Stimson WH, Farquharson DM, Shepherd A, Andersson JM. Studies on the synthesis of pregnancy-associated a2-glycoprotein by the liver, placenta and peripheral blood leucocyte populations. J Clin Lab Immunol 1979; 2: 235–238.

    CAS  Google Scholar 

  93. Folkersen J, Teisner B, Grunnet N, Grudzinskas JG, Westergaard JG, Hindersson P. Circulating levels of pregnancy zone protein: Normal range and the influence of age and gender. Clin Chim Acta 1981; 110: 139–145.

    Article  PubMed  CAS  Google Scholar 

  94. Catalona WJ, Smith DS, Ratliff TL, Basler JW. Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA 1993; 270: 948–954.

    Article  PubMed  CAS  Google Scholar 

  95. Stenman UH, Leinonen J, Alfthan H, Ranniko S, Tuhkanen K, Alfthan O. A complex between prostate-specific antigen and a1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res 1991; 51: 222–226.

    PubMed  CAS  Google Scholar 

  96. Morii M, Travis J. Amino acid sequence at the reactive site of human a1-antichymotrypsin. J Biol Chem 1983; 258: 12749–12752.

    PubMed  CAS  Google Scholar 

  97. Pettersson K, Piironen T, Seppälä M, Liukkonen L, Christensson A, Matikainen M-T, Suonpää M, Lövgren T, Lilja H. Free and complexed prostate-specific antigen (PSA): In vitrostability, epitope map, and development of immunofluorometric assays for specific and sensitive detection of free PSA and PSA-a1-antichymotrypsin complex. Clin Chem 1995, 41: 1480–1488.

    PubMed  CAS  Google Scholar 

  98. Lilja H, Christensson A, Dahlén U, Matikainen M-T, Nilsson O, Pettersson K, Lövgren T. Prostate-Specific Antigen in Serum Occurs Predominantly in Complex with a1-antichymotrypsin. Clin Chem 1991; 37: 1618–1625.

    PubMed  CAS  Google Scholar 

  99. Wood WG, Sloot van der E, Böhle A. The establishment and evaluation of luminescent-labelled immunometric assays for prostate-specific antigen-a1-antichymotrypsin complexes in serum. Eur J Clin Chem Clin Biochem 1991; 29: 787–794.

    PubMed  CAS  Google Scholar 

  100. Christensson A, Björk T, Nilsson O, Dahlén U, Matikainen M-T, Cockett T K, Abrahamsson P-A, Lilja H. Serum prostate-specific antigen complexed to a1-antichymotrypsin as an indicator of prostate cancer. J Urology 1993; 150: 100–105.

    CAS  Google Scholar 

  101. Catalona WJ, Smith DS, Wolfert RL, Wang TJ, Rittenhouse HG, Ratliff TL, Nadler RB. Evaluation of percentage of free serum prostate-specific antigen to improve specificity of prostate cancer screening. JAMA 1995, 274: 1214–1220.

    Article  PubMed  CAS  Google Scholar 

  102. Price A. Abrupt changes in prostate-specific antigen concentration in acute renal failure. Clin Chem 1993; 39: 161–162.

    PubMed  CAS  Google Scholar 

  103. Pizzo SV, Mast AE, Feldman SR, Salvesen G. In vivocatabolism of a1-antichymotrypsin is mediated by the serpin receptor which binds a1-proteinase inhibitor, antithrombin III and heparin cofactor II. Biochim Biophys Acta 1988; 967: 158–162.

    Article  PubMed  CAS  Google Scholar 

  104. Perlmutter DH, Glover GI, Rivetna M. Schasteen CS, Fallon RJ. Identification of a serpin-enzyme complex receptor on human hepatoma cells and human monocytes. Proc Natl Acad Sci USA 1990; 87: 3753–3757.

    Article  PubMed  CAS  Google Scholar 

  105. van Straalen JP, Bossens MMP, de Reijke TM, Sanders GT. Biological half-life of prostate-specific antigen after radical prostatectomy. Eur J Clin Chem Biochem 1994; 32: 53–55.

    Google Scholar 

  106. Björk T, Abrahamsson P-A, Lilja H, Pettersson K, Cockett ATK. Rates of clearance of free and complexed forms of PSA in serum after radical prostatectomy and transurethral microwave therapy. J Urol 1995; 153: 295A (abstract 265).

    Google Scholar 

  107. Agha AH, Schechter E, Roy JB, Culkin DJ. Prostate specific antigen is metabolized in the liver. J Urol 1996; 155: 1332–1335.

    Article  PubMed  CAS  Google Scholar 

  108. Xemjonow A, Oberpennig F, Surdel W, Weining C, Brandt B, Brandau W, Hertle L, Hamm M. Prostate-specific antigen and radical prostatectomy: variation after manipulation of the prostate and consecutive elimination half-life of free and total PSA. J Urol 1996; 155: 697A (abstract 1545).

    Google Scholar 

  109. Luderer AA, Chen Y-T, Soriano TF, Kramp WJ, Carlson G, Cuny C, Sharp T, Smith W, Petteway J, Brawer MK. Measurement of the proportion of free to total prostate-specific antigen improves diagnostic performance of prostate-specific antigen in the diagnostic gray zone of total prostate-specific antigen. Urology 1995; 46: 187–194.

    Article  PubMed  CAS  Google Scholar 

  110. Zhang WM, Leinonen J, Kalkkinen N, Dowell B, Stenman U-H. Purification and characterization of different molecular forms of prostate-specific antigen in human seminal fluid. Clin Chem 1995; 41: 1567–1573.

    PubMed  CAS  Google Scholar 

  111. Bushmeyer S, Bellin M, Brantmeier S, Boehm S, Kubajak C, Ax R. Relationships between bovine follicular fluid glycosaminoglycans and steroids. Endocrinology 1985; 117: 879–885.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christensson, A., Bjartell, A., Lilja, H. (1997). The Significance of Serpins in the Regulation of Proteases in the Male Genital Tract. In: Church, F.C., Cunningham, D.D., Ginsburg, D., Hoffman, M., Stone, S.R., Tollefsen, D.M. (eds) Chemistry and Biology of Serpins. Advances in Experimental Medicine and Biology, vol 425. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5391-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5391-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7461-9

  • Online ISBN: 978-1-4615-5391-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics