Skip to main content

Molecular Mechanisms Controlling the Gene Expression Program for Corneal Repair

  • Chapter
Advances in Corneal Research

Abstract

The wound healing response following surgical injury to the cornea can be quite variable and difficult to predict. The goal of this paper is to elucidate basic mechanisms which control activation of the corneal stromal cell to the repair phenotype and its subsequent competence to mediate repair tissue remodeling. These studies focused on expression of the matrix metalloproteinase, collagenase. The experiments performed in this study lead to the proposal of a new paradigm for understanding the modulation of repair gene expression by the wound environment, that is, regulation through autocrine cytokine intermediates. This model suggests a novel point at which drug intervention can be used to alter the repair process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.F. Deuel, Kawahara, R.S., Mustoe, T.A., and Pierce, G.F., Growth factors and wound healing: platelet-derived growth factor as a model cytokine. Annu. Rev. Med. 42:567 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. G.B. Benedek, Theory of transarency of the eye. Appl. Optics 10:459 (1971).

    Article  CAS  Google Scholar 

  3. J.M. Fitch, Birk, D.E., Mentzer, A., et al., Corneal collagen fibrils: dissection with specific collagenases and monoclonal antibodies. Invest. Ophthalmol. Vis. Sci. 29:1125 (1988).

    PubMed  CAS  Google Scholar 

  4. D.E. Birk, Fitch, J.M., Babiarz, J.P., et al., Collagen fibrillogenesis in vitro: interaction of type I and V collagen regulates fibril diameter. J. Cell Sci. 95:649 (1990).

    PubMed  CAS  Google Scholar 

  5. P.F. Davison, and Galbavy, E.J., Connective tissue remodeling in corneal and scleral wounds. Invest. Ophthalmol. Vis. Sci. 27:1478 (1986).

    PubMed  CAS  Google Scholar 

  6. T. Grosvenor, How predictable are the results of excimer laser photorefractive keratectomy? A review. Optometry and Vision Science 72:698 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. P.S. Binder, Radial keratotomy and excimer laser photorefractive keratectomy for the correction of myopia. J. Refr. Corn. Surg. 10:443 (1994).

    CAS  Google Scholar 

  8. C. Cintron and Kublin, C.L., Regeneration of corneal tissue. Dev. Biol. 61:346 (1977).

    Article  PubMed  CAS  Google Scholar 

  9. R.A.F. Clark, Overview and general consideration of wound repair. In The Molecular and Cellular Biology of Wound Repair, R.A.F. Clark, and Henson, P.M., eds., Plenum, New York (1988).

    Google Scholar 

  10. M.B. Berman, Collagenase and corneal ulceration. In Collagenase in Normal and Pathological Connective Tissues, D.E. Wooley, and Evanson, J.M., eds., John Wiley, Chichester (1980).

    Google Scholar 

  11. C.S. Foster, Zelt, R.P., Mai-Phan, T., and Kenyon, K.R., Immunosuppression and selective inflammatory cell depletion: studies on a guinea pig model of corneal ulceration after alkali burning. Arch. Ophthalmol. 100:1820 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. V. Falanga, Chronic wounds: pathophysiologic and experimental considerations. J. Invest. Dermatol. 100;721 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. M.A. Lemp, Cornea and sclera. Arch. Ophthalmol. 94:473 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. M.A. Kurpakus, Stock, E.L., and Jones, J.C.R., Analysis of wound healing in an in vitro model: early appearance of laminin and a 125 kD polypeptide during adhesion complex formation. J. Cell. Science 96:651 (1990).

    PubMed  CAS  Google Scholar 

  15. M.A. Kurpakus, Quaranta, V., and Jones, J.C.R., Surface relocation of α6β4 integrins and assembly of hemidesmosomes in an in vitro model of wound healing. J. Cell. Biol. 115:1737 A9(1991).

    Article  PubMed  CAS  Google Scholar 

  16. L.S. Fujikawa, Foster, C.S., Gipson, I.K., and Colvin, R.B., Basement membrane components in healing rabbit corneal epithelial wounds: immunofluorescence and ultrastructural studies. J. Cell. Biol. 98:128 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. I.K. Gipson, Spurr-Michaud, S.S., and Tisdale, A.S. Hemidesmosomes and anchoring fibril collagen appear synchronously during development and wound healing. Dev. Biol. 126:253 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. I.K. Gipson, Spurr-Michaud, S.Sj., and Keough, M., Reassembly of anchoring structures of the corneal epithelium during wound repair in the rabbit. Invest. Ophthalmol. Vis. Sci. 30:425 (1988).

    Google Scholar 

  19. M.E. Fini, Parks, W.C., Rinehart, W.B., et al., Role of matrix metalloproteinases in failure to re-epithelialize following corneal injury. Am. J. Path. 149:1287 (1996).

    PubMed  CAS  Google Scholar 

  20. A.A. Khodadoust, Silverstein, A.m., Kenyon, K.R., and Dowling, J.E., Adhesion of regenerating corneal epithelium: The role of basement membrane. Am. J. Ophthalmol 65:339 (1968).

    PubMed  CAS  Google Scholar 

  21. M. Berman, Kenyon, K., Hayashi, K., L’Hernault, N., The pathogenesis of epithelial defects in stromal ulceration. In The Cornea: Transactions of the World Congress on the Cornea III, H.D. Cavanaugh, Ed., Raven Press, Ltd., New York (1988).

    Google Scholar 

  22. M. Matsubara, Girard, K.T., Kublin, C.L., et al. Differential roles for two gelatinolytic enzymes of the matrix metalloproteinase family in the remodelling cornea. Develop. Biol. 147:425 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. M. Matsubara, Ziesks, J., and Fini, M.E., Mechanism of basement membrane dissolution preceding corneal ulceration. Invest. Ophthalmol. Vis. Sci. 32:92 (1991).

    Google Scholar 

  24. M.E. Fini, Girard, M.T., and Matsubara, M., Collagenolyltic/gelatinolytic enzymes in corneal wound healing. Acta Ophthalmologica 70(Suppl. 202):26 (1992).

    Google Scholar 

  25. M.T. Girard, Matsubara, M., Kublin C., et al., Stromal fibroblasts synthesize collagenase and stromelysin during long-term remodeling of repair tissue. J Cell. Sci. 104:1001 (1993).

    PubMed  CAS  Google Scholar 

  26. U.K. Saarialho-Kere, Chang, E.S., Welgus, H.G., and Parks, W.C., Distinct localization of collagenase and tissue inhibitor of mtalloproteinases expression in wound healing associated with ulcerative pyogenic granuloma. J Clin. Invest. 90:1952 (1993).

    Article  Google Scholar 

  27. H.E.P. Bazan, Yao, Y., and Bazan, N.G., Platelet-activating factor induces collagenase expression in corneal epithelial cells. Proc. Natl Acad. Sci. 90:8678 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. V. Weimar, Healing processes in the cornea. In The Transparancy of the Cornea, S. Duke-Elder, and E.S., Perkins, eds., Blackwell Scientific Publications, Oxford (1960).

    Google Scholar 

  29. G.K. Smelser, and Ozanic, V., New concepts in anatomy and histology of the cornea. In the Cornea, J.H. King, and McTigue, J.W., eds., Butterworths, Washington (1965).

    Google Scholar 

  30. H. Matsuda, and Smelser, G.K., Electron microscopy of corneal wound healing. Exp. Eye Res. 33:427 (1973).

    Article  Google Scholar 

  31. J.V. Jester, Rodrigues, M.M., and Herman, I.M., Characterizaion of avascular corneal wound healing fibroblasts: new insights into the myofibroblast. Am. J. Pathol. 127:140 (1987).

    PubMed  CAS  Google Scholar 

  32. R.M.R. Garana, Petrolll, M., Chen, W.-T., et al., Radial keratotomy: II. Role of the myofibroblast in corneal wound contraction. Invest. Ophthalmol. Vis Sci 33:3271 (1992).

    PubMed  CAS  Google Scholar 

  33. M.P. Welch, Odland, G.F., and Clark, R.A.F., Temporal relationships of f-actin bundle information, collagen, and fibronectin matrix assembly, and fibrinectin expression in wound contraction. J. Cell. Biol. 110;133 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. G.K. Smelser, Role of the epithelium in incorporation of sulfate in the corneal connective tissue. In The Transparency of the Cornea, S. Duke Elder and Perkins, E.S., eds., Blackwell Scientific Publications, Oxford (1960).

    Google Scholar 

  35. J.V. Jester, Barry P.A., Lind, G.J., et al., Corneal keratocytes: in situ and in vitro organization of cytoskeletal contractile proteins. Invest. Ophthalmol. Vis. Sci. 35:730 (1994).

    PubMed  CAS  Google Scholar 

  36. S.K. Masur, Cheung, J.K.H., and Antohi, S., Identification of integrins in cultured corneal fibrblasts and in isolated keratocytes. Invst. Ophthalmol. Vis. Sci. 34:2690 (1993).

    CAS  Google Scholar 

  37. J.V. Jester, Petroll, W.M., Barry, P.A., and Cavanagh, H.D., Expression of α-smooth muscle (α-SM) actin during corneal stromal wound healing. Invest. Ophthalmol. Vis. Sci. 36:709 (1995).

    Google Scholar 

  38. R. Ross, Everett, N.B., and Tyler, R., Wound healing and collagen formation. J. Cell. Biology 44:645 (1970).

    Article  CAS  Google Scholar 

  39. C. Cintron, Hong, B-S., and Kublin, C.L., Quantitative analysis of collagen from normal developing corneas and corneal scars. Current Eye Res. 1:1 (1981).

    Article  CAS  Google Scholar 

  40. B.O. Hedbys, The role of polysaccharides in corneal swelling. Exp. Eye. Res. 1:81 (1961).

    Article  CAS  Google Scholar 

  41. F.A. Bettelheim, and Plessy B., The hydration of proteolglycans of bovine cornea. Biochim. Biophys. Acta 381:203 (1975).

    Article  PubMed  CAS  Google Scholar 

  42. J.R., Hassell, Cintron, C., Kublin, C., and Newsome, D.A. Proteoglycan changes during restoration of transparency in corneal scars. Arch. Biochem. Biophys. 222:362 (1983).

    Article  PubMed  CAS  Google Scholar 

  43. T. Latvala, Tervo, K., Mustonen, R., and Tervo, T., Expression of cellular fibronectin and tenascin in the rabbit cornea after excimer laser photorefractive keratectomy: a twelve months tudy. Brit. J. Ophthalmol. 79:65 (1995).

    Article  CAS  Google Scholar 

  44. R.J. Cionni, Katakami, C., Labrich, J.B., and Kao, W-Y., Collagen metabolism following corneal lacerations in rabbits. Curr. Eye Res. 5:549 (1986).

    Article  PubMed  CAS  Google Scholar 

  45. J.H. Dunnington, Tissues responses in ocular wounds. Am. J. Ophthalmol 43:667 (1957).

    PubMed  CAS  Google Scholar 

  46. B. Johnson-Muller, and Gross, J., Regulation of corneal collagenase production: epithelial-stromal cell interactions. Proc. Natl. Acad. Sci. USA 75:4417 (1978).

    Article  PubMed  CAS  Google Scholar 

  47. B. Johnson-Wint, Regulation of stromal cell collagenase production in adult rabbit cornea: in vitro stimulation and inhibition by epithelial cell products. Proc. Natl. Acad. Sci. USA 77:5331 (1980).

    Article  PubMed  CAS  Google Scholar 

  48. B. Johnson-Wint. Autocrine regulation fcollagenase production by passaged corneal stromal cells in vitro. Invest. Ophthalmol. Vis. Sci. 28(Suppl):230 (1987).

    Google Scholar 

  49. I. Kuter, Johnson-Wint, B., Beupre, N., and Gross, J., Collagenase secretion accompanying changes in cell shape occurs only in the presence of a biologically active cytokine. J. Cell. Sci. 92:423 (1989).

    Google Scholar 

  50. M.E. Fini, and Girard, M.T., The pattern of metalloproteinase expression by corneal fibroblasts is altered with passage in cell culture. J. Cell Sci. 97:373 (1990).

    PubMed  CAS  Google Scholar 

  51. C.M. Alexander, and Werb, Z., Extracellular matrix degradation. In Cell Biology of Extracellular Matrix, E.D. Hay, ed., Plenum Press, New York (1991).

    Google Scholar 

  52. K.J. Strissel, Rinehart, W.B., Giarard, M.T., and Fini, M.E., Regulation of paracrine cytokine balance controlling collagenase synthesis by corneal cells. Invest. Ophthalmol. Vis. Sci. In press. (1997).

    Google Scholar 

  53. K.J. Strissel, Rinehart, W.B., and Fini, M.E., A corneal epithelial inhibitor of stromal cell collagenase synthesis identified as TGF-β2. Invest. Ophthalmol. Vis. Sci. 36:151 (1995).

    PubMed  CAS  Google Scholar 

  54. C.A. Dinarello, and Savage, N., Interleukin-1 and its receptor. Crit. Rev. Immunol. 9:1 (1989).

    PubMed  CAS  Google Scholar 

  55. M.B. Sporn, and Roberst, A.B., Peptide growth factors and their receptors. In Handbook of Experimental Pharmacology, Vols. 1 and 2, Springer-Verlag, Berlin (1990).

    Google Scholar 

  56. C.E. Brinckerhoff, Fini, M.E., Ruby, P.L., et al., Coordinate regulation of metalloproteinase gene expression in synovial cells. In Development and Diseases of Cartilage and Bone Matrix, Vol. 4, A. Sen, and Thornhill, T., eds., Alan R. Liss, New York (1987).

    Google Scholar 

  57. J. Aggeler, Frisch, S.M., and Werb Z., Collagenase is a major gene product of induced rabbit synovial fibroblasts. J. Cell Biol. 98:1662 (1984).

    Article  PubMed  CAS  Google Scholar 

  58. C. Nathan, and Sporn, M., Cytokines in context (review). J. Cell. Biol. 113:25 (1991).

    Article  Google Scholar 

  59. C.E. Brinckerhoff, Mitchell, T.I., Karmilowicz, M.J., et al., Autocrine induction of collagenase by serum amyloid. Science 243:655 (1989).

    Article  PubMed  CAS  Google Scholar 

  60. P. Angel, Rahmsdorf, J., Poting, A., et al., 12-0-tetradicanolyphorbol-13-acetate (TPA)-induced gene sequences in human primary diploid fibroblasts and their expression in SV40-transformed fibroblasts. J. Cell Biochem. 29:351 (1985).

    Article  PubMed  CAS  Google Scholar 

  61. J.A. West-Mays, Strissel, K.J., Sadow, P.IM., and Fini, M.E., competence for collagenase gene expression by tissue fibroblasts requires activation of an IL-1 alpha autocrine loop. Proc. Natl. Acad. Sci. USA 92:6768 (1995).

    Article  PubMed  CAS  Google Scholar 

  62. M.E. Fini, Strissel, K.J., Girard, M.T., et al., Interleukin-1 α mediates collagenase synthesis stimulated by phorbol myristate acetate. J. Biol. Chem. 269:11291 (1994).

    PubMed  CAS  Google Scholar 

  63. P. Ange, and Karin, M., The role of June, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072:129 (1991).

    Google Scholar 

  64. Z. Werb, Tremble, P.M., Behrendtsen, O., et al., Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell. Biol. 109:877 (1989).

    Article  PubMed  CAS  Google Scholar 

  65. P. Tremble, Chiquet-Dhrismann, R., and Werb, Z., The extracellular matrix ligands fibronectin and tenascin collaborate in regulating collagenase gene expression in fibroblasts. Mol. Cell. Biol. 5:439 (1994).

    CAS  Google Scholar 

  66. K. Kuno, and Matsushim, K., The IL-1 receptor signalling pathway. J. Leukocyte Biol. 56:542 (1994).

    PubMed  CAS  Google Scholar 

  67. J.A. West-Mays, Sadow, P.M., Tobin, T.W., et al., An endogenous IL-lα feedback loop regulates collagenase and IL-8 gene expression in stromal fibroblasts during corneal repair. In press. Invest. Ophthalmol. Vis. Sci. (1997).

    Google Scholar 

  68. J.R. Dunlevy, and Couchman, J.R., Interleukin-8 induces motile behavior and loss of focal adhesions in primary fibroblasts. J. Cell Sci. 108:311 (1995).

    PubMed  CAS  Google Scholar 

  69. K.J. Strissel, Girard, M.T., West-Mays, J.A., et al., Role of serum amyloid A as an intermediate in the IL-1 and PMA-stimulated signalling pathways regulating expression of rabbit fibroblast collagenase. Exp. Cell Res. Submitted.

    Google Scholar 

  70. J.A. West-Mays, Sadow, P.M., Mullady, D.K., and Fini, M.E., Inhibitors of collagenase synthesis operate through IL-1 alpha dependent and independent pathways. J. Biol. Chem. Submitted.

    Google Scholar 

  71. G. Shaw, and Kamen, R., A conserved Au sequence from the 3 untranslated region of GM-CSF mRNA mediates selection of mRNA degradation Cell 46:659 (1986).

    Article  PubMed  CAS  Google Scholar 

  72. Y. Furutani, Natake, M., Yamayoshi, M., et al., Cloning and chaacterization of the cDNAs for human and rabbit interleukin-1 precursor. Nucleic Acids Res. 13:5869 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fini, M.E., Cook, J.R., Rinehart, W.B., Sadow, P.M., Strissel, K.J., West-Mays, J.A. (1997). Molecular Mechanisms Controlling the Gene Expression Program for Corneal Repair. In: Lass, J.H. (eds) Advances in Corneal Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5389-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5389-2_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7460-2

  • Online ISBN: 978-1-4615-5389-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics