Skip to main content

Effect of Sorption on the Microbial Reductive Dechlorination of Soil-Bound Chloroalkenes

  • Chapter
  • 142 Accesses

Abstract

The sequential, microbial reductive dechlorination of tetrachloroethylene and other chlorinated alkenes under methanogenic conditions was studied in liquid and soil slurry systems. A field contaminated soil was used and the effect of sorption on the reductive dechlorination rates was elucidated. As a result of microbial activity and enhanced reductive dechlorination, the extent of soil-bound contaminant release was five-fold more than in the soil slurry controls. The reductive dechlorination rates in the soil slurry system were between one and two orders of magnitude lower than those achieved in a soil-free culture. Therefore, the soil-bound contaminants exhibited lower bioavailability when compared to liquid-phase chloroalkenes. This study demonstrated the need for a continuous supply of electron donors to sustain an active primary metabolism (e.g., methanogenesis), as well as to supply the required electrons for the reductive dechlorination process. A very small fraction (less than 0.01%) of the total reducing power used for both the methanogenesis and dechlorination processes was actually channeled towards the latter process. The results of this study indicate tha development and/or enhancement of subsurface, methanogenic activity could effectively result in the biotransformation of soil-bound chloroalkenes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Westrick, J.J.; Mello, J.W.; Thomas, R.F. The groundwater supply survey.J. Am. Water Works Assoc.;1984, 76:52–59.

    CAS  Google Scholar 

  2. Wolf, K.; Holland, R.; Rajaratnam, A. Vinyl chloride contamination: The hidden treat.J. Haz. Mat.;1987, 15:163–184.

    Article  CAS  Google Scholar 

  3. Verschueren, K.Handbook of Environmental Data on Organic Chemicals;Van Nostrand Reinhold Co.; New York, 1983.

    Google Scholar 

  4. Pearson, C.R. C1and C2Halocarbons. In Hutzinger, O. (Ed.)The Handbook of Environmental ChemistryVol. 3Part B: Anthropogenic Compounds.Springer-Verlag, New York, 1979.

    Google Scholar 

  5. U.S. Environmental Protection Agency.Superfund Public Health Evaluation Manual;EPA/540/1–86/060; U.S. EPA/Office of Emergency and Remedial Response, Washington, DC, 1989.

    Google Scholar 

  6. . Federal Register.National primary and secondary drinking water regulations. U.S. EPA. Vol. 54, No. 97, Monday, May 22, 1989.

    Google Scholar 

  7. Mellan, R.Industrial Solvents;Reinhold Publishing Corporation, New York, 1950.

    Google Scholar 

  8. Broholm, K.; Christensen, T.H.; Jensen, B.K. Laboratory feasibility studies on biological in-situ treatment of a sandy soil contaminated with chlorinated aliphatics.Environ. Technol.;1991, 12:279–289.

    Article  CAS  Google Scholar 

  9. Vogel, TM.; Criddle, C.S.; McCarty, P.L. Transformations of halogenated aliphatic compounds.Environ. Sci. Technol.;1987, 21:722–736.

    Article  CAS  Google Scholar 

  10. Bagley D.M.; Gossett, J.M. Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures.Appl. Environ. Microbiol.;1990, 56: 2511–2516.

    CAS  Google Scholar 

  11. Barrio-Lage, G.B.; Parsons, F.Z.; Nassar, R.S.; Lorenzo, P.A. Sequential dechlorination of chlorinated ethenes.Environ. Sci. Technol;1986, 20: 96–99.

    Article  CAS  Google Scholar 

  12. Bouwer, E.J.; McCarty, P.L. Transformation of I- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions.Appl. Environ. Microbio!.;1983, 45: 1286–1294.

    CAS  Google Scholar 

  13. de Bruin, W.P.; Kotterman, M.J.J.; Posthumus, M.A.; Schraa, G.; Zehnder, A.J.B. Complete biological reductive transformation of tetrachloroethene to ethane.Appl. Environ. Microbio!.;1992, 58: 1996–2000.

    Google Scholar 

  14. DiStefano, T.D.; Gossett, J.M.; Zinder, S.H. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis.Appl Environ. Microbio!.;1991, 57: 2287–2292.

    CAS  Google Scholar 

  15. DiStefano, T.D.; Gossett, J.M.; Zinder, S.H. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture.Appl. Environ. Microbio!.;1992, 58: 3622–3629.

    CAS  Google Scholar 

  16. Freedman, D.L.; Gossett, J.M. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions.Appl. Environ. Microbio!.; 198955: 2144–2I51.

    CAS  Google Scholar 

  17. Holliger, C.; Schraa, G.; Stamms, A.J.M.; Zehnder, A.J.B. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth.Appl. Environ. Microbiol.;1993, 59: 2991–2997.

    CAS  Google Scholar 

  18. Parsons, F.Z.; Wood, P.R.; DeMarco, J. Transformations of tetrachloroethene and trichloroethene in microcosms and groundwater.J. Am. Water Works Assoc.;1984, 76: 56–59.

    CAS  Google Scholar 

  19. Pavlostathis, S.G.; Zhuang, P. Transformation of trichloroethylene by sulfate-reducing cultures enriched from a contaminated subsurface soil.Appl. Microbio!. Biotechnol.;1991, 36: 416–420.

    CAS  Google Scholar 

  20. Pavlostathis, S.G.; Zhuang, P. Reductive dechlorination of chloroalkenes in microcosms developed with a field contaminated soil.Chemosphere.;1993, 27: 585–595.

    Article  CAS  Google Scholar 

  21. Vogel, T.M.; McCarty, P.L.. Biotransformation of tetrachloroethylene to trichloroethylene, vinyl chloride and carbon dioxide under methanogenic conditions.Appl. Environ. Microbio!.;1985, 49: 1080–1083.

    CAS  Google Scholar 

  22. Tandoi, V.; DiStefano, T.D.; Bowser, P.A.; Gossett, J.M.; Zinder, S.H. Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture.Environ. Sci. Technol.;1994, 28:973–979.

    Article  CAS  Google Scholar 

  23. Zhuang, P.; Pavlostathis, S.G. Effect of chlorinated alkenes on the reductive dechlorination and methane production processes.Wat. Sci. Technol.;1994, 30: 85–94.

    CAS  Google Scholar 

  24. Belay, N.; Daniels, L. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria.App!. Environ. Microbio!.;1987,53:1604–1610.

    CAS  Google Scholar 

  25. Bario-Lage, G.B.; Parsons, F.Z.; Lorenzo, P.A. Inhibition and stimulation of trichloroethylene biodegradation in microaerophilic microcosms.Environ. Toxicol. Chem.;1990, 7:889–895.

    Article  Google Scholar 

  26. Baek, N.H.; Jaffé, P.R. The degradation of trichloroethylene in mixed methanogenic cultures.J. Environ. Qual.;1989, 18:515–518.

    Article  CAS  Google Scholar 

  27. McCall, P.J.; Agin, G.L. Desorption kinetics of picloram as affected by residence time in the soil.Environ. Toxicol. Chem.;1985, 4:37–44.

    Article  CAS  Google Scholar 

  28. Pavlostathis, S.G.; Jaglal, K. Desorptive behavior of trichloroethylene in contaminated soil.Environ. Sci. Technol.;1991, 25: 274–279.

    Article  CAS  Google Scholar 

  29. Pavlostathis, S.G.; Mathavan, G.N. Desorption kinetics of selected volatile organic compounds from field contaminated soils.Environ. Sci. Technol.;1992, 26:532–538.

    Article  CAS  Google Scholar 

  30. Deitsch, J.J., Smith, J.A. Effect of Triton X-100 on the rate of trichloroethylene desorption from soil to water.Environ. Sci. Technol.;1995, 29:1069–1080.

    Article  CAS  Google Scholar 

  31. Mah, A.R.; Smith, M.R. The methanogenic bacteria. In Starr, M.P.; Stolp, H.; Trüper, H.G.; Balows, A.; Schlegel, H.G. (Eds.)The Prokaryotes: A Handbook on Habitats Isolation and Identification of BacteriaVol. II, Ch. 76, pp. 948–977; Springer-Verlag, New York, 1981.

    Google Scholar 

  32. Wolin, E.A.; Wolin, M.J.; Wolfe, R.S. Formation of methane by bacterial extracts.J. Biol. Chem.;1963, 238: 2882–2886.

    CAS  Google Scholar 

  33. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.;1976, 72: 248–254.

    Article  CAS  Google Scholar 

  34. Annual Book of ASTM Standards;No. 04.08; American Society for Testing and Materials, Philadelphia, PA, 1987.

    Google Scholar 

  35. Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Page, A.L. (Ed.)Methods of Soil Analysis - Part 2: Chemical and Microbiological Properties2nd ed., Agronomy Monographs No. 9, American Society of Agronomy and Soil Science Society of America, Madison, WI, p. 539, 1982.

    Google Scholar 

  36. Carter, D.L.; Mortland, M.M; Kemper, W.D. Specific surface. In Klute, K. (Ed.)Methods of Soil Analysis - Part I: Physical and Mineralogical Methods2nd ed., Ch. 16, pp. 4I3–423. American Society of Agronomy, inc. and Soil Science Society of America, Inc., Madison, WI., 1982.

    Google Scholar 

  37. Pignatello, J.J. Sorption dynamics of organic compounds in soils and sediments. in Sowhney, B.L.; Brown, K. (Eds)Reactions and Movement of Organic Chemicals in Soils;SSSA Special Publication No 22, Ch. 3, pp. 45–80; Soil Science of America; Madison, WI, 1989.

    Google Scholar 

  38. Pignatello, J.J. Slowly reversible sorption of aliphatic halocarbons in soils. I. Formation of residual fractions.Environ. Toxicol. Chem.;1990, 9:1107–1116.

    Article  CAS  Google Scholar 

  39. Pignatello, J.J. Slowly reversible sorption of aliphatic halocarbons in soils. II. Mechanistic aspects.Environ. Toxicol. Chem.;1990, 9:1117–1126.

    Article  CAS  Google Scholar 

  40. Ball, W.P.; Roberts, P.V. Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium.Environ. Sci. Technol.;1991, 25:1223–1236.

    Article  CAS  Google Scholar 

  41. Ball, W.P.; Roberts, P.V. Long-term sorption of halogenated organic chemicals by aquifer material. 1. letra-particle diffusion.Environ. Sci. Technol.;1991, 25:1237–1249.

    Article  CAS  Google Scholar 

  42. Curtis, G.P.; Roberts, P.V.; Reinhard, M. A natural gradient experiment on solute transport in a sand aquifer. 4. Sorption of organic solutes and its influence on mobility.Water Resour: Res.;1986, 22:2059–2067.

    Article  CAS  Google Scholar 

  43. Lyman, W.J.; Reehl, W.F.; Rosenblatt, D.H. (Eds.)Handbook of Chemical Property Estimation Methods--Environmental Behavior of Organic Compounds;American Chemical Society; Washington, DC, 1990.

    Google Scholar 

  44. Garbarini, D.R.; Lion, L.W. Influence of the nature of soil organics on the sorption of toluene and trichloroethylene.Environ. Sci. Technol.;1986, 20:1263–1269.

    Article  CAS  Google Scholar 

  45. Zhuang, P.Anaerobic Biotransformation of Chlorinated Alkenes.Ph.D. Dissertation, Clarkson University, Potsdam, NY, 1994.

    Google Scholar 

  46. Zhuang, P.; Pavlostathis, S.G. Effect of temperature, pH and electron donor on the microbial reductive dechlorination of chloroalkenes.Chemospltere;1995, 31: 3537–3548.

    Article  CAS  Google Scholar 

  47. Rijinaarts, H.H.M.; Bachmann, A.; Jumelet, J.C.; Zehnder, A.J.B. Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of ct-hexachlorocyclohexane in a contaminated calcareous soil.Environ. Sci. Technol.;1990, 24:1349–1354.

    Article  Google Scholar 

  48. Robinson, K.G.; Farmer, W.S.; Novak, J.T. Availability of sorbed toluene in soils for biodegradation by acclimated bacteria.Wat. Res.;1990, 24:345–350.

    Article  CAS  Google Scholar 

  49. Pavlostathis, S.G.; Giraldo-Gomez, E. Kinetics of anaerobic treatment: A critical review.Crit. Rev. Environ. Control.;1991, 21: 411–490.

    Article  CAS  Google Scholar 

  50. Mihelcic, J.R.; Luthy, R.G. Sorption and microbial degradation of naphthalene in soil-water suspensions under denitrification conditions.Environ. Sci. Technol.;1991, 25:169–177.

    Article  CAS  Google Scholar 

  51. Miller, M.E.; Alexander, M. Kinetics of bacterial degradation of benzylamine in a montmorillonite suspension.Environ. Sci. Technol.;1991, 25:240–245.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavlostathis, S.G., Zhuang, P. (1997). Effect of Sorption on the Microbial Reductive Dechlorination of Soil-Bound Chloroalkenes. In: Tedder, D.W., Pohland, F.G. (eds) Emerging Technologies in Hazardous Waste Management 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5387-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5387-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7459-6

  • Online ISBN: 978-1-4615-5387-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics