Advertisement

Ultrasonic Reflectivity of the Heart: A Measure of Fibrosis?

  • Michele Ciulla
  • Roberta Paliotti
  • Fabio Magrini
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 432)

Abstract

The conventional echo image depicts at a relative low resolution the echo reflections from the various components of the myocardium, such as muscle fibers, capillaries and collagen strands, acting as diffuse reflectors. In normal conditions the resulting ultrasonic image texture of the myocardium is rather fine and homogeneous, and it is bordered by two thin echolucent lines corresponding to the wide endocardium-blood and epicardium-lung acoustic interfaces1.

Keywords

Myocardial Fibrosis Ultra Sound Tissue Characterization Attenuation Property Collagen Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhandari AK, Nanda NC. Myocardial texture characterization by two-dimensional echocardiography. Am J Cardiol 1983; 51: 817–825.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller JG, Perez JE and Sobel BE. Ultrasonic characterization of myocardium. Progress in Cardiovascular Diseases 1985; 27(2): 85–110.CrossRefGoogle Scholar
  3. 3.
    Price RR, Jones TB, Goddard J, Everette James A. Basic concepts of ultrasonic tissue characterization. Radiologic Clinics of North America 1980; vol 18 n°1: 21–30.PubMedGoogle Scholar
  4. 4.
    Pearlman ES, Weber KT, Janicki JS, Pietra GG and Fishman AP. Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest 1982; vol 46 n°2: 158–164.PubMedGoogle Scholar
  5. 5.
    Huysman JAN, et al. Changes in nonmyocyte tissue composition associated with pressure overload of hypetrophic human hearts. Pathol Res Pract 1989; 184: 577–581.PubMedCrossRefGoogle Scholar
  6. 6.
    Kossoff G, Gossett WJ, Carpenter DA, Jellins J, Dadd MJ. Principles and classification of soft tissues by grey scale echography. Ultrasound Med Biol 1976; n°2: 89–105.Google Scholar
  7. 7.
    Shaw TRD, Logan-Sinclair RB, Surin C, et al. Relation between regional echo intensity and myocardial connettive tissue in chronic left ventricular disease. Br Heart J 1984; 51: 46–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Marini C, Ghelardini G, Picano E, et al. Effects of coronary blood flow on myocardial gray level amplitude in two dimensional echocardiography: an experimental study. Cardiovasc Res 1993; 27: 279–283.PubMedCrossRefGoogle Scholar
  9. 9.
    Sagar KB, Pelc LR, Rhyne TL, Howard J and Warltier DC. Estimation of myocardial infarct size with ultrasonic tissue characterization. Circulation 1991; 83: 1419–1428.PubMedCrossRefGoogle Scholar
  10. 10.
    Chandrasekaran K, Aylward PE, Fleagle SR, et al. Feasibility of identifying amyloid and hypertrophic cardiomyopathy with the use of computerized quantitative texture analysis of clinical echocardiographic data. J-Am-Coll-Cardiol. 1989 Mar 15; 13(4): 832–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Rayleigh JWS. The theory of sounds. Dover Publications ed, New York 1945.Google Scholar
  12. 12.
    Roelandt J, van Dorp WG, Bom N, Laird JD, Hugenholtz PG. Resolution problems in echocardiology: a source of interpretation errors. Am J cardiol 1976; 37: 256–262.PubMedCrossRefGoogle Scholar
  13. 13.
    Skorton DJ, Collins SM, Woskoff SD, Bean JA and Melton HE Jr. Range and azimuth-dependent variability of image texture in two-dimensional echocardiograms. Circulation 1983; 68 n°4:834–840.PubMedCrossRefGoogle Scholar
  14. 14.
    Aygen M, Popp RL. Influence of orientation of myocardial fibers on echocardiographic images. Am J Cardiol 1987;45:248–263.Google Scholar
  15. 15.
    Ultrasonic Tissue Characterization. NBS Special Publication, U.S. Government Printing Office ed. Washington 1976; n° 453.Google Scholar
  16. 16.
    Sommer GF, Joynt LF, Carroll BA and Macovski A. Ultrasonic characterization of abdominal tissues via digital analysis of backscattered waveforms. Radiology 1981; 141: 811–817.PubMedGoogle Scholar
  17. 17.
    Rose JL and Goldberg BB. Frequency analysis. In Basic Phisics in Diagnostic Ultrasound, John Wiley and Sons ed, New York 1970; Chapter 7: 98–105.Google Scholar
  18. 18.
    Olshansky B., Collins S.M., Skorton D.J., Prasad N.V. Variation of left ventricular myocardial gray level on two-dimensional echocardiograms as a result of cardiac contraction. Circulation 1984; vol 70 n°6: 972–977.PubMedCrossRefGoogle Scholar
  19. 19.
    Sagar KB, Pelc LE, Rhyne TL, Wann LS and Waltier DC. Influence of heart rate, preload, afterload and inotropic state on myocardial ultrasonic backscatter. Circulation 1988; vol 77 n°2: 478–483.PubMedCrossRefGoogle Scholar
  20. 20.
    Ciulla M, Paliotti R, Magrini F. Effects of septal thickening during cardiac cycle on myocardial echoreflectivity in normal subjects: analysis in 256 gray scale images. High Blood Press 1994; vol 3(suppl 1): 11.Google Scholar
  21. 21.
    Perez JE, Miller JG, Barzilai B, et al. Progress in quantitative ultrasonic characterization of myocardium: from the laboratory to the bedside. J Am Soc Echo 1988; vol 1 n°4: 294–305.Google Scholar
  22. 22.
    Ciulla M, Paliotti R, Hess DB, Tjahja E, Campbell SE, Magrini F and Weber KT. Echocardiographic patterns of myocardial fibrosis in hypertensive patients: endomyocarial biopsy versus ultrasonic tissue characterization. J Am Soc Echo 1997 in press.Google Scholar
  23. 23.
    Morris R. Image processing on the Macintosh. IEEE Computer 1990; 103–106.Google Scholar
  24. 24.
    Lennard P. Image analysis for all. Nature 1990; vol 347: 103–104.PubMedCrossRefGoogle Scholar
  25. 25.
    Picano E, Pelosi G, Marzilli M, et al. In vivo quantitative ultrasonic evaluation of myocardial fibrosis in humans. Circulation 1990; 81: 58–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Mimbs JW, Yuhas DE, Miller JG, Weiss AN, Sobel BE. Detection of myocardial infarction in vitro based on altered attenuation of ultrasound. Circ Res 1977; 41: 192–198.PubMedCrossRefGoogle Scholar
  27. 27.
    Mimbs JW, O’Donnell M, Bauwens D, Miller JG, Sobel BE. The dependence of ultrasonic attenuation and backscatter on collagen content in dog and rabbit hearts. Circ Res 1980; 47: 48–58.CrossRefGoogle Scholar
  28. 28.
    Gigli G, Lattanzi F, Lucarini AR, et al. Normal utrasonic myocardial reflectivity in hypertensive patients. A tissue characterization study. Hypertension 1993; 21: 329–334.Google Scholar
  29. 29.
    Lattanzi F, Di Bello V, Picano E, Caputo MT, Talarico L, Di Muro C, Landini L, Santoro G, Giusti C, Distante A. Normal ultrasonic myocardial reflectivity in athletes with increased left ventricular mass. A tissue characterization study. Circulation 1992; 85: 1828–1834.PubMedCrossRefGoogle Scholar
  30. 30.
    Lucarini AR, Gigli G, Lattanzi F, Picano E, Mazzarisi A, Iannetti M and Landini L. Regression of hypertensive myocardial hypertrophy does not affect ultrasonic myocardial reflectivity: a tissue characterization study. J Hypert 1994; 12: 73–79.CrossRefGoogle Scholar
  31. 31.
    Hoyt RM, Skorton DJ, Collins SM, Melton HE. Ultrasonic backscatter and collagen in normal ventricular myocardium. Circ 1984; 69(4): 775–782.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Michele Ciulla
    • 1
  • Roberta Paliotti
    • 1
  • Fabio Magrini
    • 1
    • 2
  1. 1.Centro di Fisiologia Clinica e Ipertensione Istituto di Clinica Medica Generale e Terapia Medica Ospedale MaggioreUniversità di MilanoItaly
  2. 2.Cattedra di Medicina InternaC.L.O. Università di CagliariItaly

Personalised recommendations