Skip to main content

Left Ventricular Hypertrophy and Arterial Blood Pressure in Experimental Models of Hypertension

  • Chapter
Hypertension and the Heart

Abstract

Hypertensive left ventricular hypertrophy (LVH) is a major independent risk factor for cardiovascular morbidity and mortality in human essential hypertension. It has been shown that LVH is a better predictor of coronary artery disease and stroke than high blood pressure itself, hyperlipidaemia and cigarette smoking1,2. The spontaneously hypertensive rat (SHR) and its close relative stroke-prone SHR (SHRSP) have been used as models of hypertensive LVH and have allowed us to develop a number of mechanistic and genetic studies which would not have been feasible in human essential hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Mensah, T.W. Pappas, M.J. Koren, R.J. Ulin, J.H. Laragh and R.B. Devereux. Comparison of classification of hypertension severity by blood pressure level and World Health Organization criteria for prediction of conccurrent cardiac abnormalities and subsequent complications in essential hypertension. J Hypertens 1993; 11: 1429–1440.

    Article  PubMed  CAS  Google Scholar 

  2. D. Levy, R.J. Garrison, D.D. Savage, W.B. Kannel and W.R. Castelli. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  3. A.M. Devlin, J.F. Gordon, A.O. Davidson, J.S. Clark, C.A. Hamilton, J.J. Morton, A.M. Campbell, J.L. Reid and A.F. Dominiczak. The effects of perindopril on vascular smooth muscle polyploidy in stroke-prone spontaneously hypertensive rats. J Hypertens 1995; Vol 13 No. 2: 211–218.

    Article  PubMed  CAS  Google Scholar 

  4. A.M. Devlin, A.O. Davidson, J.F. Gordon, A.M. Campbell, J.J. Morton, J.L. Reid and A.F. Dominiczak. Vascular smooth muscle polyploidy in genetic hypertension. J Human Hypertens 1995; 9: 497–500.

    CAS  Google Scholar 

  5. G.K. Owens. Differential effect of antihypertensive drug therapy on vascular smooth muscle cell hypertrophy, hyperploidy and hyperplasia in the spontaneously hypertensive rat. Circ Res 1985; 56: 525–536.

    Article  PubMed  CAS  Google Scholar 

  6. J.M. Pfeffer, M.A. Pfeffer, I. Mirsky and E. Braunwald. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by Captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci USA 1982; 79: 3310–3314.

    Article  PubMed  CAS  Google Scholar 

  7. A.A.T. Geisterfer, M.J. Peach and G.K. Owens. Angiotensin II induces hypertrophy, not hyperplasia of cultured rat aortic smooth muscle cells. Circ Res 1988; 62: 749–756.

    Article  PubMed  CAS  Google Scholar 

  8. M.B. Taubman, B.C. Berk, S. Izumo, T. Tsudo, R.W. Alexander and B. Nadal-Ginard. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem 1989; 264: 526–530.

    PubMed  CAS  Google Scholar 

  9. G. Engelmann, J. Vitullo and R. Gerrity. Age-related changes in ploidy levels and biochemical parameters in cardiac myocytes isolated from spontaneously hypertensive rats. Circ Res 1986; 58: 137–147.

    Article  PubMed  CAS  Google Scholar 

  10. W. Brodsky and I.V. Uryvaeva. Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol 1977; 50: 275–332.

    Article  PubMed  CAS  Google Scholar 

  11. G.K. Owens. Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am J Physiol 1989; 257: H1755–H1765.

    PubMed  CAS  Google Scholar 

  12. M.J. Black, J.F. Bertram, J.H. Campbell and G.R. Campbell. Angiotensin II induces cardiovascular hypertrophy in perindopril-treated rats. J Hypertens 1995; 13: 683–692.

    Article  PubMed  CAS  Google Scholar 

  13. A.F. Dominiczak, A.M. Devlin, W.K. Lee, N.H. Anderson, D.F. Bohr and J.L. Reid. Vascular smooth muscle polyploidy and cardiac hypertrophy in genetic hypertension. Hypertension 1996; 27: 752–759.

    Article  PubMed  CAS  Google Scholar 

  14. J.F. Arnal, A. El Amrani, G. Chatellier, J. Menard and J.B. Michael. Cardiac weight in hypertension induced by nitric oxide synthase blockade. Hypertension 1993; 22: 380–387.

    Article  PubMed  CAS  Google Scholar 

  15. N.E. Rhaleb, X.R. Yang, A.G. Scicli and A.O. Carretero. Role of kinins and nitric oxide in the antihypertensive effect of ramipril. Hypertension 1994; 23: 865–868.

    Article  PubMed  CAS  Google Scholar 

  16. M.J. Black, M.A. Adams, A. Bobik, J.H. Campbell and G.R. Campbell. Effect of enalapril on aortic smooth muscle polyploidy in the spontaneously hypertensive rat. J Hypertens 1989; 7: 997–1003.

    Article  PubMed  CAS  Google Scholar 

  17. R. Sventek, J-S. Li, K. Grove, C.F. Deschepper and E.L. Schiffrin. Vascular structure and expression of endothelin-1 gene in L-NAME-treated spontaneously hypertensive rats. Hypertension 1996; 27: 49–55.

    Article  PubMed  CAS  Google Scholar 

  18. A.M. Devlin, J.M. Brosnan, D. Graham, J.J. Morton, A. McPhaden, M. McIntyre, C.A. Hamilton, J.L. Reid, A.F. Dominiczak. Cellular and molecular mechanisms of aortic and cardiac hypertrophy due to chronic inhibition of nitric oxide synthase. Hypertension 1997 (submitted).

    Google Scholar 

  19. C.G. Brilla, B. Maisch and W.T. Weber. Renin-angiotensin system and myocardial collagen matrix remodelling in hypertensive heart disease: in vivo and in vitro studies on collagen matrix regulation. J Clin Invest 1993; 71: S35–S41.

    CAS  Google Scholar 

  20. N.H. Bishopric, P.C. Simpson and C.P. Ordahl. Induction of the skeletal alpha-actin gene in alpha-adreno-ceptor-mediated hypertrophy of rat cardiac myocytes. J Clin Invest 1987; 80: 1194–1199.

    Article  PubMed  CAS  Google Scholar 

  21. H. Tanase, Y. Yamori, C.T. Hansen and W. Lovenberg. Heart size in inbred strains of rats. Part 2. Cardiovascular DNA and RNA contents during the development of cardiac enlargement in rats. Hypertension 1982; 4: 872–880.

    Article  PubMed  CAS  Google Scholar 

  22. H. Tanase, Y. Yamori, C.T. Hansen and Lovenberg W. Heart size in inbred strains of rats. Part 1. Genetic determination of the development of cardiovascular enlargement in rats. Hypertension 1982; 4: 864–872.

    Article  PubMed  CAS  Google Scholar 

  23. G.T. Cicila, J.R. Rapp, K.D. Bloch, T.W. Kurtz, M. Pravanec, V. Kren et al. Cosegregation of the endothelin-3 locus with blood pressure and relative heart weight in inbred Dahl rats. J Hypertens 1994; 12: 643–651.

    Article  PubMed  CAS  Google Scholar 

  24. E.L. Harris, E.L. Phelan, C.M. Thomson, J.A. Millar and M.R. Grigor. Heart mass and blood pressure have separate genetic determinants in the New Zealand genetically hypertensive (GH) rat. J Hypertens 1995; 13: 397–404.

    Article  PubMed  CAS  Google Scholar 

  25. L. Zhang, K.M. Summers and M.J. West. Angiotensin I converting enzyme gene polymorphism on chromosome 10 cosegregates with blood pressure and heart weight in F2 progeny derived from spontaneously hypertensive and normotensive Wistar-Kyoto rats. Clin Exp Hypertens 1996; 8: 753–771.

    Article  Google Scholar 

  26. J.R. Rapp, S.M. Wang and H. Dene. A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 1989; 243: 542–544.

    Article  PubMed  CAS  Google Scholar 

  27. P. Hamet, M.A. Kaiser, Y. Sun, V. Page, M. Vincent and V. Kren et al. HSP 27 locus cosegregates with left ventricular mass independently of blood pressure. Hypertension 1996; 28: 1112–1117.

    Article  PubMed  CAS  Google Scholar 

  28. P. Hilbert, K. Lindpaintner, J.S. Beckmann, T. Serikawa, Soubrier F and C. Dubay et al. Chromosomal mapping of two genetic loci associated with blood pressure regulation in hereditary hypertensive rats. Nature 1991; 353: 521–529.

    Article  PubMed  CAS  Google Scholar 

  29. H.L. Jacob, K. Lindpaintner, S.E. Lincoln, K. Kusumi, R.K. Bunker and Y.P. Mao et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 1996; 67: 213–224.

    Article  Google Scholar 

  30. M. Pravanec, D. Gauguier, J.J. Schott, J. Buard, V. Kren and V. Bila et al. Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. J Clin Invest 1995; 96: 1973–1978.

    Article  Google Scholar 

  31. J. Clark, B. Jeffs, A.O. Davidson, W.K. Lee, N.H. Anderson and M.T. Bihoreau et al. Quantitative trait loci in genetically hypertensive rats: possible sex specificity. Hypertension 1996; 28: 898–906.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dominiczak, A.F. et al. (1997). Left Ventricular Hypertrophy and Arterial Blood Pressure in Experimental Models of Hypertension. In: Zanchetti, A., Devereux, R.B., Hansson, L., Gorini, S. (eds) Hypertension and the Heart. Advances in Experimental Medicine and Biology, vol 432. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5385-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5385-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7458-9

  • Online ISBN: 978-1-4615-5385-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics