Advertisement

Left Ventricular Hypertrophy and Arterial Blood Pressure in Experimental Models of Hypertension

  • A. F. Dominiczak
  • A. M. Devlin
  • M. J. Brosnan
  • N. H. Anderson
  • D. Graham
  • J. S. Clark
  • A. McPhaden
  • C. A. Hamilton
  • J. L. Reid
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 432)

Abstract

Hypertensive left ventricular hypertrophy (LVH) is a major independent risk factor for cardiovascular morbidity and mortality in human essential hypertension. It has been shown that LVH is a better predictor of coronary artery disease and stroke than high blood pressure itself, hyperlipidaemia and cigarette smoking1,2. The spontaneously hypertensive rat (SHR) and its close relative stroke-prone SHR (SHRSP) have been used as models of hypertensive LVH and have allowed us to develop a number of mechanistic and genetic studies which would not have been feasible in human essential hypertension.

Keywords

Left Ventricular Hypertrophy Cardiac Hypertrophy Heart Weight Body Weight Ratio Vascular Hypertrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Mensah, T.W. Pappas, M.J. Koren, R.J. Ulin, J.H. Laragh and R.B. Devereux. Comparison of classification of hypertension severity by blood pressure level and World Health Organization criteria for prediction of conccurrent cardiac abnormalities and subsequent complications in essential hypertension. J Hypertens 1993; 11: 1429–1440.PubMedCrossRefGoogle Scholar
  2. 2.
    D. Levy, R.J. Garrison, D.D. Savage, W.B. Kannel and W.R. Castelli. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322:1561–1566.PubMedCrossRefGoogle Scholar
  3. 3.
    A.M. Devlin, J.F. Gordon, A.O. Davidson, J.S. Clark, C.A. Hamilton, J.J. Morton, A.M. Campbell, J.L. Reid and A.F. Dominiczak. The effects of perindopril on vascular smooth muscle polyploidy in stroke-prone spontaneously hypertensive rats. J Hypertens 1995; Vol 13 No. 2: 211–218.PubMedCrossRefGoogle Scholar
  4. 4.
    A.M. Devlin, A.O. Davidson, J.F. Gordon, A.M. Campbell, J.J. Morton, J.L. Reid and A.F. Dominiczak. Vascular smooth muscle polyploidy in genetic hypertension. J Human Hypertens 1995; 9: 497–500.Google Scholar
  5. 5.
    G.K. Owens. Differential effect of antihypertensive drug therapy on vascular smooth muscle cell hypertrophy, hyperploidy and hyperplasia in the spontaneously hypertensive rat. Circ Res 1985; 56: 525–536.PubMedCrossRefGoogle Scholar
  6. 6.
    J.M. Pfeffer, M.A. Pfeffer, I. Mirsky and E. Braunwald. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by Captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci USA 1982; 79: 3310–3314.PubMedCrossRefGoogle Scholar
  7. 7.
    A.A.T. Geisterfer, M.J. Peach and G.K. Owens. Angiotensin II induces hypertrophy, not hyperplasia of cultured rat aortic smooth muscle cells. Circ Res 1988; 62: 749–756.PubMedCrossRefGoogle Scholar
  8. 8.
    M.B. Taubman, B.C. Berk, S. Izumo, T. Tsudo, R.W. Alexander and B. Nadal-Ginard. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem 1989; 264: 526–530.PubMedGoogle Scholar
  9. 9.
    G. Engelmann, J. Vitullo and R. Gerrity. Age-related changes in ploidy levels and biochemical parameters in cardiac myocytes isolated from spontaneously hypertensive rats. Circ Res 1986; 58: 137–147.PubMedCrossRefGoogle Scholar
  10. 10.
    W. Brodsky and I.V. Uryvaeva. Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol 1977; 50: 275–332.PubMedCrossRefGoogle Scholar
  11. 11.
    G.K. Owens. Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am J Physiol 1989; 257: H1755–H1765.PubMedGoogle Scholar
  12. 12.
    M.J. Black, J.F. Bertram, J.H. Campbell and G.R. Campbell. Angiotensin II induces cardiovascular hypertrophy in perindopril-treated rats. J Hypertens 1995; 13: 683–692.PubMedCrossRefGoogle Scholar
  13. 13.
    A.F. Dominiczak, A.M. Devlin, W.K. Lee, N.H. Anderson, D.F. Bohr and J.L. Reid. Vascular smooth muscle polyploidy and cardiac hypertrophy in genetic hypertension. Hypertension 1996; 27: 752–759.PubMedCrossRefGoogle Scholar
  14. 14.
    J.F. Arnal, A. El Amrani, G. Chatellier, J. Menard and J.B. Michael. Cardiac weight in hypertension induced by nitric oxide synthase blockade. Hypertension 1993; 22: 380–387.PubMedCrossRefGoogle Scholar
  15. 15.
    N.E. Rhaleb, X.R. Yang, A.G. Scicli and A.O. Carretero. Role of kinins and nitric oxide in the antihypertensive effect of ramipril. Hypertension 1994; 23: 865–868.PubMedCrossRefGoogle Scholar
  16. 16.
    M.J. Black, M.A. Adams, A. Bobik, J.H. Campbell and G.R. Campbell. Effect of enalapril on aortic smooth muscle polyploidy in the spontaneously hypertensive rat. J Hypertens 1989; 7: 997–1003.PubMedCrossRefGoogle Scholar
  17. 17.
    R. Sventek, J-S. Li, K. Grove, C.F. Deschepper and E.L. Schiffrin. Vascular structure and expression of endothelin-1 gene in L-NAME-treated spontaneously hypertensive rats. Hypertension 1996; 27: 49–55.PubMedCrossRefGoogle Scholar
  18. 18.
    A.M. Devlin, J.M. Brosnan, D. Graham, J.J. Morton, A. McPhaden, M. McIntyre, C.A. Hamilton, J.L. Reid, A.F. Dominiczak. Cellular and molecular mechanisms of aortic and cardiac hypertrophy due to chronic inhibition of nitric oxide synthase. Hypertension 1997 (submitted).Google Scholar
  19. 19.
    C.G. Brilla, B. Maisch and W.T. Weber. Renin-angiotensin system and myocardial collagen matrix remodelling in hypertensive heart disease: in vivo and in vitro studies on collagen matrix regulation. J Clin Invest 1993; 71: S35–S41.Google Scholar
  20. 20.
    N.H. Bishopric, P.C. Simpson and C.P. Ordahl. Induction of the skeletal alpha-actin gene in alpha-adreno-ceptor-mediated hypertrophy of rat cardiac myocytes. J Clin Invest 1987; 80: 1194–1199.PubMedCrossRefGoogle Scholar
  21. 21.
    H. Tanase, Y. Yamori, C.T. Hansen and W. Lovenberg. Heart size in inbred strains of rats. Part 2. Cardiovascular DNA and RNA contents during the development of cardiac enlargement in rats. Hypertension 1982; 4: 872–880.PubMedCrossRefGoogle Scholar
  22. 22.
    H. Tanase, Y. Yamori, C.T. Hansen and Lovenberg W. Heart size in inbred strains of rats. Part 1. Genetic determination of the development of cardiovascular enlargement in rats. Hypertension 1982; 4: 864–872.PubMedCrossRefGoogle Scholar
  23. 23.
    G.T. Cicila, J.R. Rapp, K.D. Bloch, T.W. Kurtz, M. Pravanec, V. Kren et al. Cosegregation of the endothelin-3 locus with blood pressure and relative heart weight in inbred Dahl rats. J Hypertens 1994; 12: 643–651.PubMedCrossRefGoogle Scholar
  24. 24.
    E.L. Harris, E.L. Phelan, C.M. Thomson, J.A. Millar and M.R. Grigor. Heart mass and blood pressure have separate genetic determinants in the New Zealand genetically hypertensive (GH) rat. J Hypertens 1995; 13: 397–404.PubMedCrossRefGoogle Scholar
  25. 25.
    L. Zhang, K.M. Summers and M.J. West. Angiotensin I converting enzyme gene polymorphism on chromosome 10 cosegregates with blood pressure and heart weight in F2 progeny derived from spontaneously hypertensive and normotensive Wistar-Kyoto rats. Clin Exp Hypertens 1996; 8: 753–771.CrossRefGoogle Scholar
  26. 26.
    J.R. Rapp, S.M. Wang and H. Dene. A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 1989; 243: 542–544.PubMedCrossRefGoogle Scholar
  27. 27.
    P. Hamet, M.A. Kaiser, Y. Sun, V. Page, M. Vincent and V. Kren et al. HSP 27 locus cosegregates with left ventricular mass independently of blood pressure. Hypertension 1996; 28: 1112–1117.PubMedCrossRefGoogle Scholar
  28. 28.
    P. Hilbert, K. Lindpaintner, J.S. Beckmann, T. Serikawa, Soubrier F and C. Dubay et al. Chromosomal mapping of two genetic loci associated with blood pressure regulation in hereditary hypertensive rats. Nature 1991; 353: 521–529.PubMedCrossRefGoogle Scholar
  29. 29.
    H.L. Jacob, K. Lindpaintner, S.E. Lincoln, K. Kusumi, R.K. Bunker and Y.P. Mao et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 1996; 67: 213–224.CrossRefGoogle Scholar
  30. 30.
    M. Pravanec, D. Gauguier, J.J. Schott, J. Buard, V. Kren and V. Bila et al. Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. J Clin Invest 1995; 96: 1973–1978.CrossRefGoogle Scholar
  31. 31.
    J. Clark, B. Jeffs, A.O. Davidson, W.K. Lee, N.H. Anderson and M.T. Bihoreau et al. Quantitative trait loci in genetically hypertensive rats: possible sex specificity. Hypertension 1996; 28: 898–906.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • A. F. Dominiczak
    • 1
  • A. M. Devlin
    • 1
  • M. J. Brosnan
    • 1
  • N. H. Anderson
    • 1
  • D. Graham
    • 1
  • J. S. Clark
    • 1
  • A. McPhaden
    • 1
  • C. A. Hamilton
    • 1
  • J. L. Reid
    • 1
  1. 1.Department of Medicine and TherapeuticsGardiner Institute Western InfirmaryGlasgowUK

Personalised recommendations