Skip to main content

Salt Sensitivity and Left Ventricular Hypertrophy

  • Chapter
Book cover Hypertension and the Heart

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 432))

Abstract

Coronary artery disease (CAD), congestive heart failure (CHF) and sudden death remain the most common and major complications of essential hypertension (EH)1. The Framingham study2,3 demonstrated that in 75% of all patients in whom heart failure developed, EH was the underlying disease. Moreover, EH accelerates coronary arteriosclerosis leading to myocardial ischemia in patients with genetic predisposition4, a phenomenon that exacerbates in the presence of left ventricular hypertrophy (LVH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The 1988 report of the Joint National Committee on Detection, Evaluation and treatment of High Blood Pressure. Arch Intern Med 1988; 148: 1023–1038.

    Article  Google Scholar 

  2. Kannel WB. Some lessons in cardiovascular epidemiology from Framingham. Am J Card 1976; 37: 269–282.

    Article  PubMed  CAS  Google Scholar 

  3. Kannel WB, Castelli WP, Mellumara AM, McKee PH, Fernleib M. Role of blood pressure in the development of congestive heart failure. N Eng J Med 1972; 287: 781–787.

    Article  CAS  Google Scholar 

  4. Chobanian AV, Brecher PI, Haudenschild CC. Effects of hypertension and antihypertensive therapy on atherosclerosis: state of the art lecture. Hypertension 1986; 8(Suppl I): 15–21.

    Google Scholar 

  5. Kannel WB. Prevalence and natural history of electrocardiographic left ventricular hypertrophy. Am J Med 1983; 75(Suppl 3A): 4–11.

    Article  PubMed  CAS  Google Scholar 

  6. Casalle PN, Devereux RB, Milner M, et al. Value of echocardiographic measurement of left ventricular mass predicting cardiovascular morbid events in hypertensive men. Ann Intern Med 1986; 105: 173–178.

    Google Scholar 

  7. Massie BM, Tubau JF, Szlachcic J, O’Kelly BF. Hypertensive heart disease: The critical role of left ventricular hypertrophy. J Cardiovasc Pharmacol 1989; 13(Suppl I): s18–s24.

    Article  PubMed  Google Scholar 

  8. Messerli F, Ventura HO, Elizardi DJ, Dunn FG, Frohlich ED. Hypertension and sudden death: increased ventricular ectopic activity in left ventricular hypertrophy. Am J Med 1984:; 77: 18–22.

    Article  PubMed  CAS  Google Scholar 

  9. McLenechan JM, Henderson E, Morris KI, et al. Ventricular arrhythmias in patients with hypertensive left ventricular hypertrophy. N Eng J Med 1987; 317: 787–792.

    Article  Google Scholar 

  10. Kannel WB, D’Agostino RB, Levy D, Belanger AJ. Prognostic significance of regression of left ventricular hypertrophy. Circulation 1988; 78(suppl II): 89 (abstract).

    Google Scholar 

  11. Tarazi RC. The hemodynamics of hypertension. In: Genest J, Kuchel O, Hamet P, Cantin M Eds. Hypertension: Physiopathology and treatment. New York: McGraw-Hill, 1983; 15–42.

    Google Scholar 

  12. Grossman W, Jones D, Mc Laurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1975; 56: 56–64.

    Article  PubMed  CAS  Google Scholar 

  13. Tarazi RC. Cardiovascular hypertrophy in hypertension. Hypertension 1986; 8(Suppl II): 187–190.

    Google Scholar 

  14. Mulvany MJ, Korsgaard N. Correlation and otherwise between blood pressure, cardiac mass and resistance vessel characteristics in hypertensive, normotensive and hypertensive/normotensive hybrid rats. J Hypertens 1983; 1: 235–244.

    Article  PubMed  CAS  Google Scholar 

  15. Sen S. Regression of cardiac hypertrophy: experimental animal model. Am J Med 1983; 75(Suppl 3A): 87–93.

    Article  PubMed  CAS  Google Scholar 

  16. Tarazi RC, Fouad FM. Reversal of cardiac hypertrophy by medical treatment. Annu Rev Med 1985; 36: 407–414.

    Article  PubMed  CAS  Google Scholar 

  17. Folkow B. Cardiovascular structural adaptation: its role in the initiation and maintenance of primary hypertension. Clin Sci Mol Med 1978; 55(Suppl): 3s–22s.

    Google Scholar 

  18. Nuñez BD, Messerli FH, Amadeo C, et al. Biventricular cardiac hypertrophy in essential hypertension. Am Heart J 1987; 114: 813–818.

    Article  PubMed  Google Scholar 

  19. Yamori Y, Mori C, Nishio T, et al. Cardiac hypertrophy in early hypertension. Am J Cardiol 1979; 44: 964–969.

    Article  PubMed  CAS  Google Scholar 

  20. Radice M, Alli C, Avanzini F, et al. Left ventricular structure and function in normotensive adolescents with a genetic predisposition to hypertension. Am Heart J 1986; 111: 115–120.

    Article  PubMed  CAS  Google Scholar 

  21. Frohlich ED, Tarazi RC. Is arterial pressure the role factor responsible for hypertensive cardiac hypertrophy? Am J Cardiol 1979; 44: 959–963.

    Article  PubMed  CAS  Google Scholar 

  22. Frohlich ED. The heart in hypertension, In: Genest J, Kuchel O, Hamet P, Cantin M, Eds. Hypertension: Physiopathology and treatment. New York. McGraw-Hill, 1983; 791–810.

    Google Scholar 

  23. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cell is an alpha-1-adrenergic response. J Clin Invest 1983; 72: 732–738.

    Article  PubMed  CAS  Google Scholar 

  24. Fouad FM, Nakashima Y, Tarazi RC, Salcedo EE. Reversal of left ventricular hypertrophy in hypertensive patients treated with methyldopa. Lack of association with blood pressure control. Am J Cardiol 1982; 49: 795–801.

    Article  PubMed  CAS  Google Scholar 

  25. Schelling P, Fischer H, Ganten D. Angiotensin and cell growth: a link to cardiovascular hypertrophy? J Hypertens 1991; 9: 3–15.

    PubMed  CAS  Google Scholar 

  26. Sen S, Tarazi RC, Bumpus FM. Cardiac effects of angiotensin-antagonists in normotensive rats. Clin Sci 1979; 56: 439–444.

    PubMed  CAS  Google Scholar 

  27. Ferrano CM. Importance of the renin-angiotensin-aldosterone system (RAS) in the physiology and pathology of hypertension: An Overview. Drugs 1990; 39(Suppl 2): 1–8.

    Google Scholar 

  28. Meggs LG, Ben-Ari J, Gummon D, Gordman AA. Myocardial hypertrophy: The effect of sodium and the role of sympathetic nervous activity. Am J Hypertens 1988; 1: 11–15.

    PubMed  CAS  Google Scholar 

  29. De Simone G, Devereux RB, Camargo MJF, Wallerson DC, Sealey JE, Laragh JH. Reduction of development of left ventricular hypertrophy in salt-loaded Dahl salt-sensitive rats by angiotensin II receptor inhibition. Am J Hypertens 1996; 9: 216–222.

    Article  PubMed  Google Scholar 

  30. Schmieder RE, Messerli FH, Garaveglia GE, Nunez BE. Dietary salt intake: a determinant of cardiac involvement in essential hypertension. Circulation 1988; 78: 951–956.

    Article  PubMed  CAS  Google Scholar 

  31. Du Cailar G, Ribstein J, Grolleau R, Mimran A: Influence of sodium intake on left ventricular structure in untreated essential hypertensives. J Hypertens 1989; 7(suppl 6): S258–S259.

    Google Scholar 

  32. Heimann JC, Drumond S, Rodrigues AT, Guedes AJ, Dichtchekenian V, Marcondes M. Left ventricular hypertrophy is more marked in salt-sensitive than in salt-resistant hypertensive patients. J Cardiovasc Pharmacol 1991; 17(suppl 2): 122–124.

    Article  Google Scholar 

  33. Bigazzi R, Bianchi S, Baldari D, Sgherri G, Baldari G, Campese VM: Microalbuminuria in salt-sensitive patients. A marker for renal and cardiovascular risk factors. Hypertension 1994; 23: 195–199.

    Article  PubMed  CAS  Google Scholar 

  34. Sahn DJ, De Maria A, Kisslo J, Weyman A: The committee on M-mode standardization of the American society: recommendations regarding quantitation in M-mode echocardiography. Circulation 1978; 58:1071–1083.

    Google Scholar 

  35. Devereux RB, Reichek N: Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977; 55: 613–618.

    Article  PubMed  CAS  Google Scholar 

  36. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH: Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345–352.

    PubMed  CAS  Google Scholar 

  37. De la Sierra A, Lluch MM, Coca A, et al: Assessment of salt-sensitivity in essential hypertension by twenty-four hour ambulatory blood pressure monitoring. Am J Hypertens 1995; 8: 970–977.

    Article  PubMed  Google Scholar 

  38. De la Sierra A, Lluch MM, Paré JC, Coca A, Aguilera MT, Azqueta M. Increased left ventricular mass in salt-sensitive hypertensive patients. J Hum Hypertens 1996; in press.

    Google Scholar 

  39. Campese VM, Romoff MS, Levitan D, et al. Abnormal relationship between salt intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int 1982; 21: 371–378.

    Article  PubMed  CAS  Google Scholar 

  40. Limon I, Blanc J, Koutouzov S, Knorr A, Meyer P, Marche P. Platelet phospholipase C activity in saltdependent hypertension. Hypertension 1990; 15: 381–387.

    Article  PubMed  CAS  Google Scholar 

  41. Campese VM: Salt sensitivity in hypertension. Renal and cardiovacular implications. Hypertension 1994; 23: 531–550.

    Article  PubMed  CAS  Google Scholar 

  42. De la Sierra A, Lluch MM, Coca A, et al: Fluid, ionic and hormonal changes induced by high salt intake in salt-sensitive and salt-resistant hypertensive patients. Clin Sci 1996; 91: 155–61.

    PubMed  Google Scholar 

  43. Brilla CG, Weber KT: Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 1992; 120: 823–825.

    Google Scholar 

  44. Simpson P: Norepinephrine-stimulated hypertrophy of culture rat myocardial cell is an alpha-adrenergic response. J Clin Invest 1983; 72: 732–738.

    Article  PubMed  CAS  Google Scholar 

  45. Luft FC, Rankin LI, Henry DP, et al: Plasma and urinary norepinephrine values at extremes of Na+ intake in normal man. Hypertension 1979; 1: 261–266.

    Article  PubMed  CAS  Google Scholar 

  46. Koolen MI, van Brummelen PV: Adrenergic activity and pheripheral hemodynamics in relation to sodium sensitivity in patients with essential hypertension. Hypertension 1984; 6: 820–825.

    Article  PubMed  CAS  Google Scholar 

  47. De la Sierra A, Coca A, Paré JC, Sànchez M, Valls V, Urbano-Márquez A. Erythrocyte ion fluxes in essential hypertensive patients with left ventricular hypertrophy. Circulation 1993; 88: 1628–1633.

    Article  PubMed  Google Scholar 

  48. Navarro F, Coca A, Paré JC, De la Sierra A, Bosch X, Urbano-Márquez A. Left ventricular hypertrophy in asymptomatic essential hypertension: its relationship with aldosterone and the increase in sodium-proton exchanger activity. Eur Heart Journal 1993; 14(Suppl J): 38–41.

    Google Scholar 

  49. Coca A, De la Sierra A, Urbano-Márquez A. Ion Transport and left ventricular hypertrophy in essential hypertension. In: A. Coca and R.P. Garay (Eds). Ion Transport in Hypertension. New Perspectives. CRC Press, Boca Raton, Florida (USA), 1994: 247–272.

    Google Scholar 

  50. Lluch MM, De la Sierra A, Poch E, Coca A, Aguilera MT, Compte M, Urbano-Márquez A. Erythrocyte sodium transport, intraplatelet pH, and calcium concentration in salt-sensitive hypertension. Hypertension 1996; 27: 919–925.

    Article  PubMed  CAS  Google Scholar 

  51. Inoue I, Matsuura H, Shingu T, et al. Role of intracellular cation abnormalities in development of left ventricular hypertrophy. J Cardiovasc Pharmacol 1991; 17(suppl 2): 107–109.

    Article  Google Scholar 

  52. Verdecchia P, Porcellati C, Schillaci G, et al: Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension 1994; 24: 793–801.

    Article  PubMed  CAS  Google Scholar 

  53. Sharma AM, Ruland K, Spies KP, Distler A: Salt sensitivity in young normotensive subjects is associated with a hyperinsulinemic response to oral glucose. J Hypertens 1991; 9: 329–335.

    Article  PubMed  CAS  Google Scholar 

  54. Sharma AM, Schorr U, Distler A: Insulin resistance in young salt-sensitive normotensive subjects. Hypertension 1993; 21: 273–279.

    Article  PubMed  CAS  Google Scholar 

  55. Falkner B, Hulman S, Kushner H: Hyperinsulinemia and blood pressure sensitivity to sodium in young blacks. J Am Soc Nephrol 1992; 3: 940–946.

    PubMed  CAS  Google Scholar 

  56. Bigazzi R, Bianchi S, Baldari G, Campese VM: Clustering of cardiovascular risk factors in salt-sensitive patients with essential hypertension: role of insulin. Am J Hypertens 1996; 9: 24–32.

    Article  PubMed  CAS  Google Scholar 

  57. Weir MR. Insulin resistance and salt sensitivity. A renal hemodynamic abnormality? Am J Hypertens 1996; 9: 193s–199s.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coca, A., De la Sierra, A. (1997). Salt Sensitivity and Left Ventricular Hypertrophy. In: Zanchetti, A., Devereux, R.B., Hansson, L., Gorini, S. (eds) Hypertension and the Heart. Advances in Experimental Medicine and Biology, vol 432. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5385-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5385-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7458-9

  • Online ISBN: 978-1-4615-5385-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics