Advertisement

Protein O-GlcNAcylation: Potential Mechanisms for the Regulation of Protein Function

  • Bradley K. Hayes
  • Gerald W. Hart
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 435)

Abstract

Protein O-GlcNAcylation is the process whereby single N-acetylglucosamine residues are glycosidically linked to the hydroxyl side chains of specific serine and threonine residues. O-GlcNAc was originally identified while probing the surfaces of lymphocytes using UDP-[3H] galactose and highly purified galactosyltransferase (1). O-GlcNAc was not a substrate for galactosyltransferase unless the cell membrane was first disrupted with detergents indicating that it is an intracellular glycosylation. Subcellular fractionation further demonstrated that O-GlcNAc is found exclusively on nuclear and cytosolic proteins (2,3). Galactosyltransferase labeling of mouse liver nuclei with subsequent analysis by 2-dimensional gel electrophoresis and fluorography indicates that a large number of nuclear proteins are modified with O-GlcNAc residues and suggests that O-GlcNAc is as abundant as phosphorylation (4).

Keywords

Tetratricopeptide Repeat Hydroxy Amino Acid Nuclear Pore Protein GlcNAc Transferase Amino Terminal Portion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-R. Torres, and G.W. Hart, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. J. Biol. Chem. 259:3308 (1984).PubMedGoogle Scholar
  2. 2.
    G. D. Holt, and G. W. Hart, The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc, J. Biol Chem. 261:8049 (1986).PubMedGoogle Scholar
  3. 3.
    K. P. Kearse, and G. W. Hart, Topology of O-linked N-acetylglucosamine in murine lymphocytes, Arch. Biochem. Biophys. 290:543 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    G. W. Hart, K. D. Greis, D. L.-Y. Dong, M. A. Blomberg, T.-Y. Chou, M.-S. Jaing, E. P. Roquemore, D. M. Snow, L. K. Kreppel, R. N. Cole, and B. K. Hayes, Ubiquitous and temporal glycosylation of nuclear and cytoplasmic proteins, Pure and Appl. Chem. 67:1637 (1995).CrossRefGoogle Scholar
  5. 5.
    M. Machida, and Y. Jigami, Glycosylated DNA-binding proteins from filamentous fungus, Aspergillus orzyae: modification with N-acetylglucosamine monosaccharide through an O-glycosidic linkage Biosci. Biotech. Biochem. 58:344 (1994).CrossRefGoogle Scholar
  6. 6.
    E. Ortega-Barria, H. D. Ward, J. E. Evans, and M. E. A. Pereira, N-acetylglucosamine is present in cysts and trophozoites of Giardia lamblia and serves as receptor for wheat germ agglutinin, Mol. Biochem. Parasitol. 43:151 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Dieckmann-Schuppert, E. Bause, and R. T. Schwarz, Studies on O-glycans of Plasmodium falciparum-infected human erythrocytes: evidence for O-GlcNAc and O-GlcNAc transferase in malaria parasites, Eur. J. Biochem. 216:779 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    J. O. Previato, C. Jones, L. P. B. Goncalves, R. Wait, L. R. Travassos, and L. Mendonca-Previato, O-Glycosidically linked N-acetylglucosamine-bound oligosaccharides from glycoproteins of Trypanosoma cruzi, Biochem. J. 301:151 (1994).PubMedGoogle Scholar
  9. 9.
    S. A. Gonzalez, and O. R. Burrone, Rotavirus NS26 is modified by addition of single O-linked residues of N-acetylglucosamine, Virology 182:8 (1992).CrossRefGoogle Scholar
  10. 10.
    K. D. Greis, W. Gibson, and G. W. Hart, Site-specific glycosylation of the human cytomegalovirus tegument basic phosphoprotein (UL32) at serine 921 and serine 952, J. Virol 68:8339 (1994).PubMedGoogle Scholar
  11. 11.
    M. Whitford, and P. Faulkner, A structural polypeptide of the baculovirus Autographa californica nuclear polyhedris virus contains O-linked N-acetylglucosamine, J. Virol 66:3324 (1992).PubMedGoogle Scholar
  12. 12.
    K. G. Mullis, R. S. Haitiwanger, G. W. Hart, R. B. Marchase, and J. A. Engler, Relative accessibility of N-acetylglucosamine in trimers of the Adenovirus types 2 and 5 fiber proteins J. Virol 64:5317 (1990).PubMedGoogle Scholar
  13. 13.
    L. Medina-Vera, and R. S. Haltiwanger, SV-40 Large T antigen is modified with O-linked N-acetylglucosamine, Mol Biol Cell 5(S):340a (1994).Google Scholar
  14. 14.
    G. W. Hart, Dynamic O-GlcNAcylation of nuclear and cytoskeletal proteins, Ann. Rev. Biochem. In Press (1997).Google Scholar
  15. 15.
    S. P. Jackson, and R. Tjian, O-Glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation, Cell 55:125 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    A. J. Reason, H. R. Morris, M. Panico, R. Marais, R. H. Treisman, R. S. Haltiwanger, G. W. Hart, W. G. Kelly, and A. Dell, Localization of O-GlcNAc modification on the serum response transcription factor, J. Biol Chem. 267:16911 (1992).PubMedGoogle Scholar
  17. 17.
    M.-S. Jiang and G. W. Hart, A subpopulation of estrogen receptors are modified by O-linked N-acetylglucosamine, J. Biol Chem. In Press (1997).Google Scholar
  18. 18.
    S. Murphy, A. Pierani, C. Scheidereit, M. Melli, and R. G. Roeder, Purified octamer binding transcription factors stimulate RNA polymerase III-mediated transcription of the 7SK RNA gene, Cell 59:1071 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Lichtsteiner, and U. Schibler, A Glycosylated liver-specific transcription factor stimulates transcription of the albumin gene, Cell 57:1179 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    F. P. Lemaigre, S. M. Durviaux, O. Truong, V. J. Lannoy, J. J. Hsuan, and G. G. Rousseau, Hepatocyte nuclear factor 6, a transcription factor that contains a novel type of homeodomain and single cut domain, Proc. Natl. Academ. Sci U. S. A. 93:9460 (1996).CrossRefGoogle Scholar
  21. 21.
    T.-Y. Chou, C. V. Dang, and G. W. Hart, Glycosylation of c-Myc transactivation domain, Proc. Natl. Academ. Sci U. S. A. 92:4417 (1995).CrossRefGoogle Scholar
  22. 22.
    M. L. Privalsky, A subpopulation of the avian Erythroblastosis virus v-erbA protein, a member of the nuclear hormone receptor family, is glycosylated, J. Virol. 64:463 (1990).PubMedGoogle Scholar
  23. 23.
    P. Shaw, J. Freeman, R. Bovey, and R. Iggo, Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy terminus, Oncogene 12:921 (1996).PubMedGoogle Scholar
  24. 24.
    C.-F. Chou, A. J. Smith, and M. B. Omary, Characterization and dynamics of O-linked glycosylation of human cytokeratins 8 and 18, J. Biol. Chem. 267:3901 (1992).PubMedGoogle Scholar
  25. 25.
    I. A. King, and E. F. Hounsell, Cytokeratin 13 contains O-glycosidically linked N-acetylglucosamine, J. Biol Chem. 264:14022 (1989).PubMedGoogle Scholar
  26. 26.
    D. L.-Y. Dong, Z.-S. Xu, M. R. Chevrier, R. J. Cotter, D. W. Cleveland, and G. W. Hart, Glycosylation of mammalian neurofilaments: localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M, J. Biol. Chem. 268:16679 (1993).PubMedGoogle Scholar
  27. 27.
    D. L.-Y. Dong, Z.-S. Xu, G. W. Hart, and D. W. Cleveland, Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neuofilament protein neurofilament H, J. Biol. Chem. 271:20845 (1996).PubMedCrossRefGoogle Scholar
  28. 28.
    C. S. Arnold, G. V. W. Johnson, R. N. Cole, D. L.-Y. Dong, M. Lee, and G. W. Hart, The microtubule-associated protein Tau is extensively modified with O-linked N-acetylglucosamine, J. Biol. Chem. 271:28741 (1996).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Ding, and D. D. Vandre, High molecular weight microtubule-associated proteins contain O-linked N-acetylglucosamine, J. Biol Chem. 271:12555 (1996).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Inaba, and Y. Meade, O-N-Acetyl-D-glueosamine moiety on discrete peptide of multiple Protein 4.1 isoforms regulated by alternative pathways, J. Biol. Chem. 264:18149 (1989).PubMedGoogle Scholar
  31. 31.
    J. Hagmann, M. Grob, and M. M. Burger, The cytoskeletal protein Talin is O-glycosylated, J. Biol Chem. 267:14424 (1992).PubMedGoogle Scholar
  32. 32.
    J. G. Vostal, and D. M. Krasnewich, Dynamic O-linked N-acetylglucosamine glycosylation of platelet vinculin, Mol. Biol. Cell 5(S):263a (1994).Google Scholar
  33. 33.
    T. Luthi, R. S. Haltiwanger, P. Greengard, and M. Bahler, Synapsins contain O-linked N-acetylglucosamine, J. Neurochem. 56:1493 (1991).PubMedCrossRefGoogle Scholar
  34. 34.
    X. Zhang, and V. Bennett, Identification of O-linked N-acetylglucosamine modification of AnkyrinG isoforms targeted to Nodes of Ranvier, J. Biol Chem. 271:31391 (1996).PubMedCrossRefGoogle Scholar
  35. 35.
    W. Meikrantz, D. M. Smith, M. M. Sladicka, and R. A. Schlegel, Nuclear localization of an O-glycosylated protein phosphotyrosine phosphatase from human cells, J. Cell Sci. 98:303 (1991).PubMedGoogle Scholar
  36. 36.
    T. Matsuoka, G. V. W. Johnson and G. W. Hart, In Preparation.Google Scholar
  37. 37.
    W. G. Kelly, M. E. Dahmus, and G. W. Hart, RNA polymerase II is a glycoprotein: modification of the COOH-terminal domain by O-GlcNAc, J. Biol Chem. 268:10416 (1993).PubMedGoogle Scholar
  38. 38.
    L. S. Griffith, M. Mathes, and B. Schmitz, β-Amyloid precursor protein is modified with O-linked N-acetylglucosamine, J. Neurosci. Res. 41:270 (1995).PubMedCrossRefGoogle Scholar
  39. 39.
    C. Abeijon, and C. B. Hirschberg, Intrinsic membrane glycoproteins with cytosol-oriented sugars in the endoplasmic reticulum, Proc. Natl Academ. Sci. U. S. A. 85:1010 (1988).CrossRefGoogle Scholar
  40. 40.
    J. M. Capasso, C. Abeijon, and c. B. Hirschberg, An intrinsic membrane glycoprotein of the Golgi apparatus with O-linked N-acetylglucosamine facing the cytosol, J. Biol Chem 263:19778 (1988).PubMedGoogle Scholar
  41. 41.
    B. K. Hayes, and G. W. Hart, In search of O-GlcNAcylated proteins, Glycobiology 6:737 (1996).Google Scholar
  42. 42.
    B. K. Hayes, K. D. Greis, and G. W. Hart, Specific isolation of O-linked N-acetylglucosamine glycopeptides from complex mixtures, Anal Biochem. 228:115 (1995).PubMedCrossRefGoogle Scholar
  43. 43.
    K. D. Greis, B. K. Hayes, F. I. Comer, M. Kirk, S. Barnes, T. L. Lowary, and G. W. Hart, Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by β-elimination and tandem electrospray mass spectrometry, Anal. Biochem. 234:38 (1996).PubMedCrossRefGoogle Scholar
  44. 44.
    R. S. Haltiwanger, M. A. Blomberg, and G. W. Hart, Glycosylation of nuclear and cytoplasmic proteins: purification and characterization of a UDP-GlcNAc:polypeptide β-N-Acetylglucosaminyltransferase, J. Biol Chem. 267:9005 (1992).PubMedGoogle Scholar
  45. 45.
    D. L.-Y. Dong, and G. W. Hart, Purification and characterization of an O-GlcNAc selective N-Acetyl-β-D-glucosaminidase from rat spleen cytosol, J. Biol Chem. 269:19321 (1994).PubMedGoogle Scholar
  46. 46.
    E. P. Roquemore, M. R. Chevrier, R. J. Cotter, and G. W. Hart, Dynamic O-GlcNAcylation of the small heat shock protein αB-crystallin, Biochemistry 35:3578 (1996).PubMedCrossRefGoogle Scholar
  47. 47.
    C.-F. Chou, and M. B. Omary, Mitotic arrest-associated enhancement of O-linked glycosylation and phosphorylation of human keratins 8 and 18, J. Biol Chem. 268:4465 (1993).PubMedGoogle Scholar
  48. 48.
    K. P. Kearse, and G. W. Hart, Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins, Proc. Natl. Academ. Sci. U. S. A. 88:1701 (1991).CrossRefGoogle Scholar
  49. 49.
    T.-Y. Chou, G. W. Hart, and C. V. Dang, c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas, J. Biol. Chem. 270:18961 (1995).PubMedCrossRefGoogle Scholar
  50. 50.
    E. M. Mandelkow, O. Schweers, G. Dewes, J. Biernat, N. Gustke, B. Trinczek, and E. Mandelkow, Structure, microtubule interactions, and phosphorylation of the Tau protein, Annals N. Y. Academ Sci. 777:96 (1996).CrossRefGoogle Scholar
  51. 51.
    J. Selzer, F. Hofmann, G. Rex, M. Wilm, M. Mann, I. Just, and K. Aktories, Clostridium novyi α-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins, J. Biol Chem. 271:25173 (1996).PubMedCrossRefGoogle Scholar
  52. 52.
    C. M. Starr, and J. A. Hanover, Glycosylation of nuclear pore protein p62. reticulocyte lysate catalyzes O-linked N-acetylglucosamine addition in vitro, J. Biol. Chem. 265:6868 (1990).PubMedGoogle Scholar
  53. 53.
    G. Fisher, and F. X. Schmid, The mechanism of protein folding: Implications of in vitro refolding models for de novo protein folding and translocation in the cell, Biochemistry 29:2205 (1990).CrossRefGoogle Scholar
  54. 54.
    Y.-L. Pan, M. R. Wormarld, R. A. Dwek, and A. C. Lellouch, Effect of serine O-glycosylation on cis-trans proline isomerization, Biochem. Biophys. Res. Commun. 219:157 (1996).CrossRefGoogle Scholar
  55. 55.
    N. Jentoft, Why are proteins O-glycosylated?, Trends Biochem. Sci. 15:291 (1990).PubMedCrossRefGoogle Scholar
  56. 56.
    A. H. Andreotti, and D. Kahne, Effects of glycosylation on peptide backbone conformation, J. Amer. Chem. Soc. 115:3352 (1993).CrossRefGoogle Scholar
  57. 57.
    X. Liu, J. Sejbal, G. Kotovych, R. R. Koganty, M. A. Reddish, L. Jackson, S. S. Gandhi, A. J. Mendonca, and B. M. Longenecker, Structurally defined synthetic cancer vaccines: analysis of structure, glycosylation and recognition of cancer associated mucin, MUC-1 derived peptides, Glyconjugate J. 12:607 (1995).CrossRefGoogle Scholar
  58. 58.
    F. I. Comer, and G. W. Hart, Investigating the role of O-GlcNAc on RNA polymerase II, FASEB J. 10:A1119 (1996).Google Scholar
  59. 59.
    L. K. Kreppel, M. A. Blomberg, and G. W. Hart, Dynamic glycosylation of nuclear and cytosolic proteins: cloning and characterization of unique O-GlcNAc transferase with multiple tetratricopeptide repeats, J. Biol. Chem. In Press (1997).Google Scholar
  60. 60.
    J. R. Lamb, S. Tugendreich, and P. Hieter, Tetratricopeptide repeat interactions: to TPR or not to TPR? Trends Biochem. Sci. 20:257 (1995).PubMedCrossRefGoogle Scholar
  61. 61.
    W. K. Gottschalk, J. Stuart, T. Wang, J. Weiel, and S. Marshall, Nuclear localization of a novel glycosyltransferase, FASEB J. 9:A1362 (1995).Google Scholar
  62. 62.
    S. E. Jackson, K. A. Binkowski, and N. E. Olszewski, SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis, Proc. Natl. Academ. Sci. U. S. A. 93:9292 (1996).CrossRefGoogle Scholar
  63. 63.
    K. L. Bennett, B. Modrell, B. Greenfield, A. Bartolazzi, I. Stamenkovic, R. Peach, D. G. Jackson, F. Spring, and A. Aruffo, Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons, J. Cell Biol. 131:1623 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Bradley K. Hayes
    • 1
  • Gerald W. Hart
    • 1
  1. 1.Department of Biochemistry and Molecular GeneticsUniversity of Alabama at BirminghamBirminghamUK

Personalised recommendations