Advertisement

Probing Carbohydrate-Protein Interactions by High-Resolution NMR Spectroscopy

  • S. W. Homans
  • R. A. Field
  • M. J. Milton
  • M. Probert
  • J. M. Richardson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 435)

Abstract

An important requirement for a detailed understanding of the molecular basis of the interaction of a carbohydrate with its protein receptor is a high-resolution three dimensional structure of the complex. Historically, such structural information has derived from crystallographic studies which can illustrate in detail the precise nature of certain carbohydrate-protein interactions in the solid state (reviewed by Cambillau (1995)). In contrast, few high-resolution structural studies of glycan-protein interactions in solution using nuclear magnetic resonance have been reported. The solution structure of the complex is of importance since a comparison with the solution structure of the free ligand may be more meaningful, and moreover the dynamics of the system are accessible from relaxation time measurements.

Keywords

Resonance Assignment Glycosidic Linkage Nuclear Overhauser Effect Carbohydrate Ligand Adjacent Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J. S., Weimar, T., Frandsen, T. B., Svensson, B., Pinto, B. M., 1995, Novel disaccharides containing sulfur in the ring and nitrogen in the interglycosidic linkage-conformation of methyl 5′ — thio — 4 — N-alpha-inhibitor. J. Am. Chem. Soc. 117: 10799.CrossRefGoogle Scholar
  2. Arepalli, S. R., Glaudemans, C. P. J., Daves, G. D., Kovac, P., and Bax, A., 1995, Identification of protein-mediated indirect nOe effects in a disaccharide-Fab’ complex by transferred ROESY, J. Magn. Reson. B. 106: 195.PubMedCrossRefGoogle Scholar
  3. Asensio, J. L., Cañada, F. J. and Jimenez-Barbero, J., 1995, Studies of the bound conformations of methyl alpha-lactoside and methyl beta-allolactoside to ricin b-chain using transferred NOE experiments in the laboratory and rotating frames, assisted by molecular mechanics and dynamics calculations, Eur. J. Biochem. 233: 618.PubMedCrossRefGoogle Scholar
  4. Bax, A., Clore, G. M., Driscoll, P. C., Gronenborn, A. M., Ikura, M. and Kay, L. E., 1990, Practical aspects of proton-carbon-carbon-proton 3-dimensional correlation spectroscopy of C-13-labelled proteins, J. Magn. Reson. 87: 620–627.Google Scholar
  5. Bevilacqua, V. L., Thomson, D. S. and Prestegard, J. H., 1992, Conformation of methyl beta-lactoside bound to the ricin-b-chain — interpretation of transferred nuclear Overhauser effects facilitated by spin simulation and selective deuteration, Biochemistry 29: 5529.CrossRefGoogle Scholar
  6. Bundle, D. R., Baumann, H., Brisson, J. R., Gagne, S. M., Zdanov, A. and Cygler, M., 1994, Solution structure of a trisaccharide-antibody complex — comparison of NMR measurements with a crystal structure, Biochemistry 33: 5183.PubMedCrossRefGoogle Scholar
  7. Cambillau, C., 1995, The structural features of carbohydrate-protein interactions revealed by x-ray crystallography, in “New Comprehensive Biochemistry” eds. Neuberger A. and van Deenen, L. L. M. Vol 29a: pp 29–65.Google Scholar
  8. Clore, G. M. and Gronenborn, A. M., 1982, Theory and applications of the transferred Overhauser effect to the study of the conformations of small ligands bound to proteins, J. Magn. Reson. 48: 402.Google Scholar
  9. Clore, G. M. and Gronenborn, A. M., 1983, Theory of the time-dependent transferred nuclear Overhauser effect: applications to structural analysis of ligand-protein complexes in solution., J. Magn. Reson. 53: 423.Google Scholar
  10. Glaudemans, C. P. J., Lerner, L., Daves, G. D., Kovac, P., Venable, R. and Bax, A., 1990, Significant conformational changes in an antigenic carbohydrate epitope upon binding to a monoclonal antibody, Biochemistry 29: 10906.PubMedCrossRefGoogle Scholar
  11. Homans, S. W. and Forster, M., 1992, Application of restrained minimization, simulated annealing and molecular dynamics simulations for the conformational analysis of oligosaccharides, Glycobiology 2: 143.PubMedCrossRefGoogle Scholar
  12. Ikura, M., Kay, L. E. and Bax, A., 1990, A novel approach for sequential assignment of 1H, 13C and 15N spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin, Biochemistry 29: 4659.PubMedCrossRefGoogle Scholar
  13. London, R. E., Perlman, M. E., and Davis, D. G., 1992, Relaxation matrix analysis of the transferred Overhauser effect for finite exchange rates, J. Magn. Reson. 97:79.Google Scholar
  14. Low, D. G., Probert, M. A., Embleton, G., Seshadri, K., Field, R. A., Homans, S.W., Windust, J. and Davis, P. J., 1996, Structure of a glycoconjugate in solution and in complex with an antibody Fv fragment, Glycobiology in press.Google Scholar
  15. Ni, F., 1994, Recent developments in transferred NOE methods. Progr. NMR Spectr. 26: 517.CrossRefGoogle Scholar
  16. Nyholm, P-G., Magnusson, G., Zheng, Z., Norel, R., Binnington-Boyd, B. and Lingwood, C. A., 1996, Two distinct binding sites for globotriaosyl ceramide on verotoxins: identification by molecular modelling and confirmation using deoxy analogues and a new glycolipid receptor for all verotoxins, Chemistry and Biology 3: 263.PubMedCrossRefGoogle Scholar
  17. Perkins, S. J., 1982, Application of ring current calculations to the protein and transfer RNA, in “Biological Magnetic Resonance” (eds. Berliner, L., and Reuben, J.) Plenum Press, New York. Vol. 4, Chapter 4, pp 193–336.Google Scholar
  18. Petros, A. M., Kawai, M., Luly, J. R. and Fesik, S. W., 1992, Conformation of two immunosuppresive FK506 analogues when bound to FKBP by isotope-filtered NMR, FEBS Letts. 308: 309.CrossRefGoogle Scholar
  19. Poppe, L., Dabrowski, J., von der Lieth, C-W., Koike, K. and Ogawa, T., 1990, Three-dimensional structure of the oligosaccharide terminus of globotriaosylceramide and isoglobotriaosylceramide in solution, Eur. J. Biochem. 189: 313.PubMedCrossRefGoogle Scholar
  20. Richardson, J. M., Milton, M. J. and Homans, S. W., 1995, Solution dynamics of the oligosaccharide moiety of ganglioside Gm 1: comparison of solution conformations with the bound state conformation in association with cholera toxin b-pentamer, J. Mol Recog. 8: 358.CrossRefGoogle Scholar
  21. Scheffler, K., Ernst, B., Katapodis, A., Magnani, J. L., Wang, W. T., Weiseman, R. and Peters, T., 1995, Determination of the bioactive conformation of the carbohydrate ligand in the e-selectin sialyl lewis(x) complex, Angew. Chem. Int. Ed. Engl. 34: 1841.CrossRefGoogle Scholar
  22. Stein, P. E., Boodhoo, A., Tyrrell, G. J., Brunton, J. L., and Read, R. J., 1992, Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli, Nature 355: 748.PubMedCrossRefGoogle Scholar
  23. Weber, C., Wider, G., von Freyberg, B., Traber, R., Braun, W., Widmer, H. and Wüthrich, K., 1991, The NMR structure of cyclosporine-A bound to cyclophilin in aqueous solution, Biochemistry 30: 6563.PubMedCrossRefGoogle Scholar
  24. Weimar, T. and Peters, T., 1994, Aleuria aurantia agglutinin recognizes multiple conformations of α-L-Fuc(1–6)-β-D-GlcNAc-OMe, Angew. Chem. Int. Ed. Engl 33: 88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • S. W. Homans
    • 1
  • R. A. Field
    • 1
  • M. J. Milton
    • 1
  • M. Probert
    • 1
  • J. M. Richardson
    • 1
  1. 1.Centre for Biomolecular Sciences, The Purdie BuildingUniversity of St. AndrewsSt. AndrewsUK

Personalised recommendations