Defective Glycosyltransferases are Not Good for Your Health

  • Harry Schachter
  • Jenny Tan
  • Mohan Sarkar
  • Betty Yip
  • Shihao Chen
  • James Dunn
  • Jaak Jaeken
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 435)


The history of biochemical research on the structure and function of glycoproteins and glycolipids (glycoconjugates) dates back to the early 19th century (Montreuil, 1995). The variety of these macromolecules, their wide-spread distribution among all forms of life and their quantitative contribution to the bio-mass rank with those of proteins and nucleic acids. Nevertheless for a long period of time the lack of decisive information on the functions of glycoconjugates (Varki, 1993) discouraged most biochemists from entering this field. A series of discoveries over the past 25–30 years has slowly changed this attitude, e.g., the demonstration of mammalian lectins and of the association of defects in glycoconjugate metabolism with human diseases such as cancer, inflammatory and infectious diseases and various congenital diseases (Montreuil et al., 1996). Five autosomal recessive diseases have been reported to date (Table 1) in which a defect in the synthesis of asparagine-linked carbohydrate (N-glycans) has been clearly demonstrated. This presentation will focus on three of these diseases, carbohydrate-deficient glycoprotein syndromes Types I and II (CDGS I and II) and hereditary erythroblastic multinuclearity with a positive acidified serum lysis test (HEMPAS, Congenital Dyserythropoietic Anemia Type II). The study of these diseases should provide valuable information on the roles of N-glycans in human development.


Autosomal Recessive Disease Leukocyte Adhesion Deficiency Erythrocyte Membrane Protein Congenital Dyserythropoietic Anemia Dolichyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anselstetter, V., Horstmann, H.-J. and Heimpel, H., 1977, Congenital dyserythropoietic anaemia, types I and II; aberrant pattern of erythrocyte membrane proteins in CDA II, as revealed by two-dimensional Polyacrylamide gel electrophoresis, British Journal of Haematology. 35:209.PubMedCrossRefGoogle Scholar
  2. Baines, A.J., Banga, J.P.S., Gratzer, W.B., Linch, D.C. and Huehns, E.R., 1982, Red cell membrane anomalies in congenital dyserythropoietic anaemia, type II (HEMPAS), British Journal of Haematology. 50:563.PubMedCrossRefGoogle Scholar
  3. Blennow, G., Jaeken, J. and Wiklund, L.M., 1991, Neurological findings in the carbohydrate-deficient glycoprotein syndrome, Acta Paediatr Scand. 80:14.CrossRefGoogle Scholar
  4. Bonay, P. and Hughes, R.C., 1991, Purification and characterization of a novel broad-specificity (alphal→2, alphal→3 and alphal→6) mannosidase from rat liver, Eur J Biochem. 197:229.PubMedCrossRefGoogle Scholar
  5. Bonay, P., Roth, J. and Hughes, R.C., 1992, Subcellular distribution in rat liver of a novel broad-specificity (alphal→2, alphal→3 and alphal→6) mannosidase active on oligomannose glycans, Eur J Biochem. 205:399.PubMedCrossRefGoogle Scholar
  6. Charuk, J.H.M., Tan, J., Bernardini, M., Haddad, S., Reithmeier, R.A.F., Jaeken, J. and Schachter, H., 1995, Carbohydrate-deficient glycoprotein syndrome type II — An autosomal recessive N-acetylglucosaminyltransferase II deficiency different from typical hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS), Eur J Biochem. 230:797.PubMedCrossRefGoogle Scholar
  7. Chen, S., Tan, J. and Schachter, H., 1996, Transcriptional regulation of the human UDP-GlcNAc:α-6-D-mannoside βl-2-N-acetylglucosaminyltransferase II gene (MGAT2) which controls complex N-glycan synthesis, Glycoconjugate J. Submitted.Google Scholar
  8. Crookston, J.H., Crookston, M.C., Burnie, K.L., Francombe, W.H., Dacie, J.V., Davis, J.A. and Lewis, S.J., 1969, Hereditary erythroblastic multinuclearity associated with a positive acidified-serum test; a typical congenital dyserythropoietic anaemia, Brit. J. Haematol. 17:11.CrossRefGoogle Scholar
  9. Crookston, J.H., Crookston, M.C. and Rosse, W.F., 1972, Red-Cell Abnormalities in HEMPAS (Hereditary Erythroblastic Multinuclearity with a Positive Acidified-Serum Test), Brit. J. Haematol. 23 (supplement): 83.CrossRefGoogle Scholar
  10. Crookston, J.H., Godwin, T.F., Wightman, K.J.R., Dacie, J.V., Davis, J.A., Lewis, S.M. and Patterson, M.J.L. (1966). Congenital Dyserythropoietic Anaemia. International Society of Haematology, XIth Congress, Sydney, AustraliaGoogle Scholar
  11. D’Agostaro, G.A.F., Zingoni, A., Moritz, R.L., Simpson, R.J., Schachter, H. and Bendiak, B., 1995, Molecular cloning and expression of cDNA encoding the rat UDP-N-aeetylglucosamine:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II, J Biol Chem. 270: 15211.PubMedCrossRefGoogle Scholar
  12. Daniel, P.F., Winchester, B. and Warren, C.D., 1994, Mammalian alpha-mannosidases-multiple forms but a common purpose?, Glycobiology. 4: 551.PubMedCrossRefGoogle Scholar
  13. De Santis, R., Santer, U.V. and Glick, M.C., 1987, NIH 3T3 cells transfected with human tumor DNA lose the transformed phenotype when treated with swainsbnine, Biochem. Biophys. Res. Communs. 142: 348.CrossRefGoogle Scholar
  14. De Zegher, F. and Jaeken, J., 1995, Endocrinology of the carbohydrate-deficient glycoprotein syndrome type 1 from birth through adolescence, Pediatr Res. 37: 395.PubMedCrossRefGoogle Scholar
  15. Dennis, J.W., 1986, Effects of swainsonine and polyinosinic:polycytidylic acid on murine tumor cell growth and metastasis, Cancer Res. 46: 5131.PubMedGoogle Scholar
  16. Elbein, A.D., 1987, Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains, Ann. Rev. Biochem. 56: 497.PubMedCrossRefGoogle Scholar
  17. Etzioni, A., Frydman, M., Pollack, S., Avidor, I., Phillips, M.L., Paulson, J.C. and Gershoni-Baruch, R., 1992, Brief report: Recurrent severe infections caused by a novel leukocyte adhesion deficiency, N Engl J Med. 327: 1789.PubMedCrossRefGoogle Scholar
  18. Etzioni, A., Phillips, L.M., Paulson, J.C. and Harlan, J.M., 1995, Leukocyte adhesion deficiency (LAD) II, in: “Cell Adhesion and Human Disease”, J. Marsh and J.A. Goode, ed., John Wiley & Sons Ltd, Baffins Lane, Chichester, England P019 7UD, 51.Google Scholar
  19. Fukada, T., Iida, K., Kioka, N., Sakai, H. and Komano, T., 1994, Cloning of a cDNA Encoding N-Acetylglucosaminyltransferase I from Rat Liver and Analysis of Its Expression in Rat Tissues, Biosci Biotechnol Biochem. 58: 200.PubMedCrossRefGoogle Scholar
  20. Fukuda, M., Dell, A., Oates, J.E. and Fukuda, M.N., 1984a, Structure of branched glycosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes, J. Biol. Chem. 259: 8260.PubMedGoogle Scholar
  21. Fukuda, M.N., 1990, HEMPAS disease: genetic defect of glycosylation, Glycobiology. 1: 9.PubMedCrossRefGoogle Scholar
  22. Fukuda, M.N., 1993, Congenital dyserythropoietic anaemia type II (HEMPAS) and its molecular basis, Bailliere’s Clinical Haematology. 6: 493.PubMedCrossRefGoogle Scholar
  23. Fukuda, M.N., Bothner, B., Scartezzini, P. and Dell, A., 1986a, Isolation and characterization of poly-N-acetyllactosaminylceramides accumulated in the erythrocytes of congenital dyserythropoietic anemia type II patients, Chem. Physics Lipids. 42: 185.CrossRefGoogle Scholar
  24. Fukuda, M.N., Dell, A. and Scartezzini, P., 1987, Primary defect of congenital dyserythropoietic anemia type II. Failure in glycosylation of erythrocyte lactosaminoglycan-proteins caused by lowered N-acetylglucosaminyltransferase II, J. Biol. Chem. 262: 7195.PubMedGoogle Scholar
  25. Fukuda, M.N., Gaetani, G.F., Izzo, P., Scartezzini, P. and Dell, A., 1992, Incompletely processed N-glycans of serum glycoproteins in congenital dyserythropoietic anaemia type II (HEMPAS), Br J Haematol. 82: 745.PubMedCrossRefGoogle Scholar
  26. Fukuda, M.N., Klier, G., Yu, J. and Scartezzini, P., 1986b, Anomalous clustering of underglycosylated band 3 in erythrocytes and their precursor cells in congenital dyserythropoietic anemia type II, Blood. 68: 521.PubMedGoogle Scholar
  27. Fukuda, M.N., Masri, K.A., Dell, A., Luzzatto, L. and Moremen, K.W., 1990, Incomplete synthesis of N-glycans in congenital dyserythropoietic anemia type II caused by a defect in the gene encoding alpha-mannosidase II, Proc Natl Acad Sci Usa. 87: 7443.PubMedCrossRefGoogle Scholar
  28. Fukuda, M.N., Papayannopoulou, T., Gordon-Smith, E.C., Rochant, H. and Testa, U., 1984b, Defect in glycosylation of erythrocyte membrane proteins in congenital dyserythropoietic anaemia type II (HEMPAS), British J. Haematology. 56: 55.CrossRefGoogle Scholar
  29. Hagberg, B.A., Blennow, G., Kristiansson, B. and Stibler, H., 1993, Carbohydrate-Deficient Glycoprotein Syndromes — Peculiar Group of New Disorders, Pediat Neurol 9: 255.PubMedCrossRefGoogle Scholar
  30. Harlow, R.W.H. and Lowenthal, R.M., 1982, Erythrocyte membrane proteins in an unusual case of congenital dyserythropoietic anaemia, type II (CDA II), British Journal of Haematology. 50: 35.PubMedCrossRefGoogle Scholar
  31. Harpaz, N. and Schachter, H., 1980, Control of glycoprotein synthesis. V. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine:α-D-mannoside β-2-N-acetylglucosaminyltransferase I, J Biol Chem. 255: 4894.PubMedGoogle Scholar
  32. Heimpel, H. and Wendt, F., 1968, Congenital dyserythropoietic anemia with karyorrhexis and multinuclearity of erythroblasts, Helvetica Medica Acta. 34: 103.PubMedGoogle Scholar
  33. Hull, E., Sarkar, M., Spruijt, M.P.N., Höppener, J.W.M., Dunn, R. and Schachter, H., 1991, Organization and localization to chromosome 5 of the human UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I gene, Biochem Biophys Res Commun. 176: 608.PubMedCrossRefGoogle Scholar
  34. Humphries, M.J. and Olden, K., 1989, Asparagine-linked oligosaccharides and tumor metastasis, Pharmacol Ther. 44: 85.PubMedCrossRefGoogle Scholar
  35. Ioffe, E. and Stanley, P., 1994, Mice Lacking N-Acetylglucosaminyltransferase I Activity Die at Mid-Gestation, Revealing an Essential Role for Complex or Hybrid N-Linked Carbohydrates, Proc Natl Acad Sci USA. 91: 728.PubMedCrossRefGoogle Scholar
  36. Jaeken, J. and Carchon, H., 1993, The Carbohydrate-Deficient Glycoprotein Syndromes-An Overview, J Inherited Metab Dis. 16: 813.PubMedCrossRefGoogle Scholar
  37. Jaeken, J., Carchon, H. and Stibler, H., 1993a, The Carbohydrate-Deficient Glycoprotein Syndromes — Pre-Golgi and Golgi Disorders?, Glycobiology. 3: 423.PubMedCrossRefGoogle Scholar
  38. Jaeken, J., Decock, P., Stibler, H., Vangeet, C., Kint, J., Ramaekers, V. and Carchon, H., 1993b, Carbohydrate-Deficient Glycoprotein Syndrome Type II, J Inherited Metab Dis. 16: 1041.PubMedCrossRefGoogle Scholar
  39. Jaeken, J., Hagberg, B. and Stromme, P., 1991, Clinical presentation and natural course of the carbohydrate-deficient glycoprotein syndrome, Acta Paediatr Scand. 80: 6.CrossRefGoogle Scholar
  40. Jaeken, J., Schachter, H., Carchon, H., Decock, P., Coddeville, B. and Spik, G., 1994, Carbohydrate deficient: Glycoprotein syndrome type II: A deficiency in Golgi localised N-acetyl-glucosaminyltransferase II, Arch Dis Child. 71: 123.PubMedCrossRefGoogle Scholar
  41. Jaeken, J., Spik, G. and Schachter, H., 1996, Carbohydrate-deficient glycoprotein syndrome Type II: an autosomal recessive disease due to mutations in the N-acetylglucosaminyltransferase II gene, in: “Glycoproteins and Disease”, J. Montreuil, J.F.G. Vliegenthart and H. Schachter, ed., Elsevier, Amsterdam, The Netherlands, 457.CrossRefGoogle Scholar
  42. Jaeken, J., Vanderschueren-Lodeweyckx, M., Casaer, P., Snoeck, L., Corbeel, L., Eggermont, E. and Eeckels, R., 1980, Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG deficiency, increased serum arylsulphatase A and increased CSF protein: a new syndrome?, Pediatric Res. 14: 179.CrossRefGoogle Scholar
  43. Knauer, R., Lehle, L., Hanefeld, F. and Vonfigura, K., 1994, Normal N-oligosaccharyltransferase activity in fibroblasts from patients with carbohydrate-deficient glycoprotein syndrome, J Inherited Metab Dis. 17: 541.PubMedCrossRefGoogle Scholar
  44. Kornfeld, R. and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Ann. Rev. Biochem. 54: 631.PubMedCrossRefGoogle Scholar
  45. Kornfeld, S., 1990, Lysosomal enzyme targeting, Biochem Soc Trans. 18: 367.PubMedGoogle Scholar
  46. Kornfeld, S., Gregory, W. and Chapman, A., 1979, Class E Thy-1 negative mouse lymphoma cells utilize an alternate pathway of oligosaccharide processing to synthesize complex-type oligosaccharides, J. Biol. Chem. 254: 11649.PubMedGoogle Scholar
  47. Kornfeld, S. and Mellman, I., 1989, The biogenesis of lysosomes, Annu Rev Cell Biol. 5: 483.PubMedCrossRefGoogle Scholar
  48. Krasnewich, D.M., Holt, G.D., Brandy, M., Skovby, F., Redwine, J. and Gahl, W.A., 1995, Abnormal synthesis of dolichol-linked oligosaccharides in carbohydrate-deficient glycoprotein syndrome, Glycobiology. 5: 503.PubMedCrossRefGoogle Scholar
  49. Kumar, R., Yang, J., Eddy, R.L., Byers, M.G., Shows, T.B. and Stanley, P., 1992, Cloning and expression of the murine gene and chromosomal location of the human gene encoding N-acetylglucosaminyltransferase I, Glycobiology. 2: 383.PubMedCrossRefGoogle Scholar
  50. Kumar, R., Yang, J., Larsen, R.D. and Stanley, P., 1990, Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation, Proc Natl Acad Sci Usa. 87: 9948.PubMedCrossRefGoogle Scholar
  51. Madden, M.J., Morrow, C.S., Nakagawa, M., Goldsmith, M.E., Fairchild, C.R. and Cowan, K.H., 1993, Identification of 5′ and 3′ sequences involved in the regulation of transcription of the human mdr1 gene in vivo, J. Biol. Chem. 268: 8290.PubMedGoogle Scholar
  52. Martinsson, T., Bjursell, C., Stibler, H., Kristiansson, B., Skovby, F., Jaeken, J., Blennow, G., Stromme, P., Hanefeld, F. and Wahlstrom, J., 1994, Linkage of a locus for carbohydrate-deficient glycoprotein syndrome type I (CDG1) to chromosome 16p, and linkage disequilibrium to microsatellite marker D16S406, Hum Mol Genet. 3: 2037.PubMedGoogle Scholar
  53. Mawby, W.J., Tanner, M.J.A., Anstee, D.J. and Clamp, J.R., 1983, Incomplete glycosylation of erythrocyte membrane proteins in congenital dyserythropoietic anaemia type II (CDA II), British Journal of Haematology. 55: 375.CrossRefGoogle Scholar
  54. Metzler, M., Gertz, A., Sarkar, M., Schachter, H., Schrader, J.W. and Marth, J.D., 1994, Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development, EMBO J. 13: 2056.PubMedGoogle Scholar
  55. Misago, M., Liao, Y.F., Kudo, S., Eto, S., Mattei, M.G., Moremen, K.W. and Fukuda, M.N., 1995, Molecular cloning and expression of cDNAs encoding human alpha-mannosidase II and a previously unrecognized alpha-mannosidase IIx isozyme, Proc Natl Acad Sci USA. 92: 11766.PubMedCrossRefGoogle Scholar
  56. Montreuil, J., 1995, The history of glycoprotein research, a personal view, in: “Glycoproteins”, J. Montreuil, J.F.G. Vliegenthart and H. Schachter, ed., Elsevier, Amsterdam, The Netherlands, 1.CrossRefGoogle Scholar
  57. Montreuil, J., Vliegenthart, J.F.G. and Schachter, H., 1996, “Glycoproteins and Disease”, Elsevier, Amsterdam, The Netherlands.Google Scholar
  58. Moremen, K.W., 1989, Isolation of a rat liver Golgi mannosidase II clone by mixed oligonucleotide-primed amplification of cDNA, Proc. Natl. Acad. Sci. USA. 86(14): 5276.PubMedCrossRefGoogle Scholar
  59. Moremen, K.W. and Robbins, P.W., 1991, Isolation, characterization, and expression of cDNAs encoding murine alpha-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans, J Cell Biol. 115: 1521.PubMedCrossRefGoogle Scholar
  60. Moremen, K.W. and Touster, O., 1986, Topology of mannosidase II in rat liver Golgi membranes and release of the catalytic domain by selective proteolysis, J. Biol. Chem. 261: 10945.PubMedGoogle Scholar
  61. Moremen, K.W., Touster, O. and Robbins, P.W., 1991, Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme, J Biol Chem. 266: 16876.PubMedGoogle Scholar
  62. Moremen, K.W., Trimble, R.B. and Herscovics, A., 1994, Glycosidases of the asparagine-linked oligosaccharide processing pathway, Glycobiology. 4: 113.PubMedCrossRefGoogle Scholar
  63. Nathan, D.G. and Oski, F.A., 1987, “Hematology of Infancy and Childhood”, W.B. Saunders Company, Philadelphia, PA.Google Scholar
  64. Ohno, K., Yuasa, I., Akaboshi, S., Itoh, M., Yoshida, K., Ehara, H., Ochiai, Y. and Takeshita, K., 1992, The carbohydrate deficient glycoprotein syndrome in three Japanese children, Brain Dev. 14: 30.PubMedCrossRefGoogle Scholar
  65. Pan, Y.T. and Elbein, A.D., 1995, How can N-linked glycosylation and processing inhibitors be used to study carbohydrate synthesis and function, in: “Glycoproteins”, J. Montreuil, J.F.G. Vliegenthart and H. Schachter, ed., Elsevier, Amsterdam, The Netherlands, 415.CrossRefGoogle Scholar
  66. Panneerselvam, K. and Freeze, H.H., 1995, Enzymes involved in the synthesis of mannose-6-phosphate from glucose are normal in carbohydrate deficient glycoprotein syndrome fibroblasts, Biochem Biophys Res Commun. 208: 517.PubMedCrossRefGoogle Scholar
  67. Panneerselvam, K. and Freeze, H.H., 1996a, Mannose corrects altered N-glycosylation in carbohydrate-deficient glycoprotein syndrome fibroblasts, J Clin Invest. 97: 1478.PubMedCrossRefGoogle Scholar
  68. Panneerselvam, K. and Freeze, H.H., 1996b, Mannose enters mammalian cells using a specific transporter that is insensitive to glucose, J Biol Chem. 271: 9417.PubMedCrossRefGoogle Scholar
  69. Phillips, M.L., Schwartz, B.R., Etzioni, A., Bayer, R., Ochs, H.D., Paulson, J.C. and Harlan, J.M., 1995, Neutrophil adhesion in leukocyte adhesion deficiency syndrome type 2, J Clin Invest. 96: 2898.PubMedCrossRefGoogle Scholar
  70. Powell, L.D., Paneerselvam, K., Vij, R., Diaz, S., Manzi, A., Buist, N., Freeze, H. and Varki, A., 1994, Carbohydrate-deficient glycoprotein syndrome: Not an N-linked oligosaccharide processing defect, but an abnormality in lipid-linked oligosaccharide biosynthesis?, J Clin Invest. 94: 1901.PubMedCrossRefGoogle Scholar
  71. Pownall, S., Kozak, C.A., Schappert, K., Sarkar, M., Hull, E., Schachter, H. and Marth, J.D., 1992, Molecular cloning and characterization of the mouse UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I gene, Genomics. 12: 699.PubMedCrossRefGoogle Scholar
  72. Pugh, B.F. and Tjian, R., 1990, Mechanism of transcriptional activation by Sp1: evidence for coactivators, Cell. 61: 1187.PubMedCrossRefGoogle Scholar
  73. Ramaekers, V.T., Stibler, H., Kint, J. and Jaeken, J., 1991, A new variant of the carbohydrate deficient glycoproteins syndrome, J. Inher. MetabDis. 14: 385.CrossRefGoogle Scholar
  74. Rearick, J., Chapman, A. and Kornfeld, S., 1981, Glucose starvation alters lipid-linked oligosaccharide biosynthesis on Chinese hamster ovary cells, J. Biol. Chem. 256: 6255.PubMedGoogle Scholar
  75. Saito, H., Gu, J.G., Nishikawa, A., Ihiara, Y., Fujii, J., Kohgo, Y. and Taniguchi, N., 1995, Organization of the human N-acetylglucosaminyltransferase V gene, Eur J Biochem. 233: 18.PubMedCrossRefGoogle Scholar
  76. Scartezzini, P., Forni, G.L., Baldi, M., Izzo, C. and Sansone, G., 1982, Decreased glycosylation of band 3 and band 4.5 glycoproteins of erythrocyte membrane in congenital dyserythropoietic anaemia type II, Brit. J. Haematol. 51: 569.CrossRefGoogle Scholar
  77. Schachter, H., 1986, Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides, Biochem. Cell Biol. 64:163.PubMedCrossRefGoogle Scholar
  78. Schachter, H., 1991, The “yellow brick road” to branched complex N-glycans, Glycobiology. 1: 453.PubMedCrossRefGoogle Scholar
  79. Schachter, H., 1994, Molecular Cloning of Glycosyltransferase Genes, in: “Molecular Glycobiology”, M. Fukuda and O. Hindsgaul, ed., Oxford University Press, Oxford, UK, 88.Google Scholar
  80. Schachter, H., 1995, Glycosyltransferases involved in the synthesis of N-glycan antennae, in: “Glycoproteins”, J. Montreuil, J.F.G. Vliegenthart and H. Schachter, ed., Elsevier, Amsterdam, The Netherlands, 153.CrossRefGoogle Scholar
  81. Stibler, H., Blennow, G., Kristiansson, B., Lindehammer, A. and Hagberg, B., 1994, Carbohydrate-deficient glycoprotein syndrome: Clinical expression in adults with a new metabolic disease, J Neurol Neurosurg Psychiatry. 57: 552.PubMedCrossRefGoogle Scholar
  82. Stibler, H., Stephani, U. and Kutsch, U., 1995, Carbohydrate-deficient glycoprotein syndrome — A fourth subtype, Neuropediatrics. 26: 235.PubMedCrossRefGoogle Scholar
  83. Stibler, H., Westerberg, B., Hanefeld, F. and Hagberg, B., 1993, Carbohydrate deficient glycoprotein (CDG) syndrome — a new variant, type III, Neuropediatrics. 24: 51.PubMedCrossRefGoogle Scholar
  84. Struck, D.K. and Lennarz, W.J., 1980, The function of saccharide-lipids in synthesis of glycoproteins, in: “The Biochemistry of Glycoproteins and Proteoglycans”, W.J. Lennarz, ed., Plenum Press, New York, N.Y., 35.CrossRefGoogle Scholar
  85. Tan, J., D’Agostaro, G.A.F., Bendiak, B., Reck, F., Sarkar, M., Squire, J.A., Leong, P. and Schachter, H., 1995, The human UDP-N-acetylglucosamine: alpha-6-D-mannoside-beta-1,2-N-acetylglucosaminyltransferase II gene (MGAT2) — Cloning of genomic DNA, localization to chromosome 14q21, expression in insect cells and purification of the recombinant protein, Eur J Biochem. 231: 317.PubMedCrossRefGoogle Scholar
  86. Tan, J., Dunn, J., Jaeken, J. and Schachter, H., 1996, Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause Carbohydrate-Deficient Glycoprotein Syndrome Type II, an autosomal recessive disease with defective brain development, American J. Human Genetics. 59: 810.Google Scholar
  87. Tropea, J.E., Kaushal, G.P., Pastuszak, I., Mitchell, M., Aoyagi, T., Molyneux, RJ. and Elbein, A.D., 1990, Mannostatin A, a new glycoprotein-processing inhibitor, Biochemistry. 29: 10062.PubMedCrossRefGoogle Scholar
  88. Tulsiani, D.R., Opheim, D.J. and Touster, O., 1977, Purification and characterization of alpha-D-mannosidase from rat liver golgi membranes., J Biol. Chem. 252: 3227.PubMedGoogle Scholar
  89. Tulsiani, D.R. and Touster, O., 1985, Characterization of a novel α-D-mannosidase from rat brain microsomes, J. Biol. Chem. 260: 13081.PubMedGoogle Scholar
  90. Tulsiani, D.R.P., Harris, T.M. and Touster, O., 1982, Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II, J. Biol. Chem. 257: 7936.PubMedGoogle Scholar
  91. van den Eijnden, D.H., Koenderman, A.H.L. and Schiphorst, W.E.C.M., 1988, Biosynthesis of blood group i-active polylactosaminoglycans. Partial purification and properties of an UDP-GlcNAc:N-acetyllactosaminide βl→3-N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid, J. Biol. Chem. 263: 12461.PubMedGoogle Scholar
  92. Van Schaftingen, E. and Jaeken, J., 1995, Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I, FEBS Lett. 377: 318.PubMedCrossRefGoogle Scholar
  93. Varki, A., 1993, Biological roles of oligosaccharides: All of the theories are correct, Glycobiology. 3: 97.PubMedCrossRefGoogle Scholar
  94. Velasco, A., Hendricks, L., Moremen, K.W., Tulsiani, D., Touster, O. and Farquhar, M.G., 1993, Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II, J Cell Biol. 122: 39.PubMedCrossRefGoogle Scholar
  95. Verbert, A., 1995, From Glc3Man9GlcNAc2-protein to Man5GlcNAc2-protein: transfer ‘en bloc’ and processing, in: “Glycoproteins”, J. Montreuil, J.F.G. Vliegenthart and H. Schachter, ed., Elsevier, Amsterdam, The Netherlands, 145.CrossRefGoogle Scholar
  96. Verwilghen, R.L., Lewis, S.M., Dacie, J.V., Crookston, J.H. and Crookston, M.C., 1973, HEMPAS: congenital dyserythropoietic anaemia (type II), Quarterly Journal of Medicine N.S. 42: 257.Google Scholar
  97. Von Andrian, U.H., Berger, E.M., Ramezani, L., Chambers, J.D., Ochs, H.D., Harlan, J.M., Paulson, J.C., Etzioni, A. and Arfors, K.E., 1993, In vivo behavior of neutrophils from two patients with distinct inherited leukocyte adhesion deficiency syndromes, J Clin Invest. 91: 2893.CrossRefGoogle Scholar
  98. Wada, Y., Gu, J.G., Okamoto, N. and Inui, K., 1994, Diagnosis of Carbohydrate-Deficient Glycoprotein Syndrome by Matrix-Assisted Laser Desorption Time-of-Flight Mass Spectrometry, Biol Mass Spectrom. 23: 108.PubMedCrossRefGoogle Scholar
  99. Wada, Y., Nishikawa, A., Okamoto, N., Inui, K., Tsukamoto, H., Okada, S. and Taniguchi, N., 1992, Structure of serum transferrin in carbohydrate-deficient glycoprotein syndrome, Biochem Biophys Res Commun. 189: 832.PubMedCrossRefGoogle Scholar
  100. Wasylyk, B., Hahn, S.L. and Giovane, A., 1993, The Ets family of transcription factors, Eur J Biochem. 211: 7.PubMedCrossRefGoogle Scholar
  101. Yamashita, K., Ideo, H., Ohkura, T., Fukushima, K., Yuasa, I., Ohno, K. and Takeshita, K., 1993a, Sugar chains of serum transferrin from patients with carbohydrate deficient glycoprotein syndrome. Evidence of asparagine-N-linked oligosaccharide transfer deficiency, J Biol Chem. 268: 5783.PubMedGoogle Scholar
  102. Yamashita, K., Ohkura, T. and Fukushima, K., 1996, A partial deficiency of dehydrodolichol reduction is a cause of carbohydrate-deficient glycoprotein syndrome type I, Abstracts International Symposium on Molecular and Cell Biology pf Glycoconjugate Expression Switzerland.Google Scholar
  103. Yamashita, K., Ohkura, T., Ideo, H., Ohno, K. and Kanai, M., 1993b, Electrospray Ionization-Mass Spectrometric Analysis of Serum Transferrin Isoforms in Patients with Carbohydrate-Deficient Glycoprotein Syndrome, J Biochem Tokyo. 114: 766.PubMedGoogle Scholar
  104. Yamashita, K. and Ohno, K., 1996, Carbohydrate-Deficient Glycoprotein Syndrome Type I, in: “Glycoproteins and Disease”, J. Montreuil, J.F.G. Vliegenthart and H. Schachter, ed., Elsevier, Amsterdam, The Netherlands, 445.CrossRefGoogle Scholar
  105. Yang, J., Bhaumik, M., Liu, Y. and Stanley, P., 1994, Regulation of N-linked glycosylation. Neuronal cell-specific expression of a 5′ extended transcript from the gene encoding N-acetylglucosaminyltransferase I, Glycobiology. 4: 703.PubMedCrossRefGoogle Scholar
  106. Yasugi, E., Nakasuji, M., Dohi, T. and Oshima, M., 1994, Major Defect of Carbohydrate-Deficient-Glycoprotein Syndrome Is Not Found in the Synthesis of Dolichyl Phosphate or N-Acetylglucosaminyl-Pyrophosphoryl-Dolichol, Biochem Biophys Res Commun. 200: 816.PubMedCrossRefGoogle Scholar
  107. Yip, B., Mulder, H., Chen, S., Höppener, J.W.M. and Schachter, H., 1996, Organization of the human β1–2 N-acetylglucosaminyltransferase I gene (MGAT1) which controls complex and hybrid N-glycan synthesis, Biochemical J. In press.Google Scholar
  108. Zdebska, E., Anselsetter, V., Pacuszka, T., Krauze, R., Chelstowska, A., Heimpel, H. and Koscielak, J., 1987, Glycolipids and glycopepties of red cell membranes in congenital dyserythropoietic anemia type II (CDAII), British J Haematol. 66: 385.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Harry Schachter
    • 1
  • Jenny Tan
    • 1
  • Mohan Sarkar
    • 1
  • Betty Yip
    • 1
  • Shihao Chen
    • 1
  • James Dunn
    • 2
  • Jaak Jaeken
    • 3
  1. 1.Hospital for Sick Children, 555 University Avenue, and Dept. of BiochemistryUniv. of TorontoTorontoCanada
  2. 2.Visible Genetics Inc.TorontoCanada
  3. 3.Univ. Hospital Gasthuisberg, Univ. of LeuvenLeuvenBelgium

Personalised recommendations