Cytokine and Protease Glycosylation as a Regulatory Mechanism in Inflammation and Autoimmunity

  • Philippe Van den Steen
  • Pauline M. Rudd
  • Raymond A. Dwek
  • Jo Van Damme
  • Ghislain Opdenakker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 435)


Cytokines are locally produced hormones that alert the innate and specific immune systems. Many cytokines induce, enhance and govern the traffic of leukocytes. An important mechanism in cell trafficking and migration through endothelial basement membranes and connective tissues is the cytokine-regulated production of matrix degrading proteases. The latter include the serine proteinases of plasminogen activation and metalloproteinases such as collagenases, stromelysins and gelatinases. Many cytokines and all known matrix proteinases are glycoproteins and thus occur as sets of glycoforms. The relation between structures and functions of these glycoproteins has already been probed extensively at the protein level but not yet at the carbohydrate level. Attached oligosaccharides target the cytokines and proteinases to specific cellular receptors and matrix binding sites. In addition, a number of cytokines possess lectin-like functions and may thus interact with carbohydrates of the host or parasites. These intermolecular interactions influence for instance the compartmentalisation, the cell- and tissue-specific distribution and the pharmacokinetics of cytokines and proteinases. Attempts were done to deduce structure-function rules for the intramolecular effects of carbohydrates on cytokines and matrix proteinases. The relatively voluminous N-linked sugars downmodulate the specific activities of enzymes and cytokines. Because in host stress reactions (infection, inflammation, trauma) N-linked glycosylation is less efficient, glycosylation may constitute an important regulatory mechanism in the cytokine network and in multi-enzyme cascades.


Tissue Plasminogen Activator Specific Immune System Specific Cellular Receptor Attached Oligosaccharide Sensitive Assay System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolf, G.R., Kalsner, I., Ahorn, H., Maurer-Fogy, I., and Cantell, K., 1991, Natural human interferon-α2 is O-glycosylated, Biochem. J. 276: 511–518.PubMedGoogle Scholar
  2. Cebon, J., Nicola, N., Ward, M., Gardner, I., Dempsey, P., Layton, J., Durhrsen, U., Burgess, A.W., Nice, E., and Morstyn, G., 1990, Granulocyte-macrophage colony stimulating factor from human lymphocytes. The effect of glycosylation on receptor binding and biological activity, J. Biol. Chem. 265:4483–4491.PubMedGoogle Scholar
  3. Cerretti, D.P., Kozlosky, C.J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T.A., March, C.J., Kronheim, S.R., Druck, T., Cannizzaro, L.A., Huebner, K., and Black, R.A., 1992, Molecular cloning of the interleukin-lß converting enzyme, Science 256:97–100.PubMedCrossRefGoogle Scholar
  4. de Munk, G.A., Parkinson, J.F., Groeneveld, E., Bang, N.U., and Rijken, D.C., 1993, Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin, Biochem. J. 290:655–659. K., 1991, Clearing up glycoprotein hormones, Cell 67:1029–1032.PubMedGoogle Scholar
  5. Dijkmans, R., Heremans, H., and Billiau, A., 1987, Heterogeneity of Chinese hamster ovary cell-produced recombinant interferon-g, J. Biol. Chem. 262:2528–2535.PubMedGoogle Scholar
  6. Drickamer, K., 1991, Clearing up glycoprotein hormones, Cell 67:1029–1032.PubMedCrossRefGoogle Scholar
  7. Fleer, R., Chen, X.J., Amellal, N., Yeh, P., Fournier, A., Guinet, F., Gault, N., Faucher, D., Folliard, F., Fukuhara, H., and Mayaux, J.-F., 1991, High-level secretion of correctly processed recombinant human interleukin-1 beta in Kluyveromyces lactis, Gene 107:285–295.PubMedCrossRefGoogle Scholar
  8. George, A.J.T., 1994, Surface-bound cytokines-a possible effector mechanism in bacterial immunity?, Immunol. Today 15:88–89.PubMedCrossRefGoogle Scholar
  9. Hasegawa, M., 1993, A thermodynamic model for denaturation of granulocyte colony-stimulating factor: O-linked sugar chain suppresses not the triggering deprotonation but the succeeding denaturation, Biochim. Biophys. Acta. 1203:295–297.PubMedCrossRefGoogle Scholar
  10. Ishii, K., Yamagami, S., Tanaka, H., Motoki, M., Suwa, Y. and Endo, N., 1995, Full active baculovirus-expressed human monocyte chemoattractant protein 1 with the intact N-terminus, Biochem. Biophys. Res. Comm. 206:955–961.PubMedCrossRefGoogle Scholar
  11. Kodama, S., Tsujimoto, M., Tsuruoka, N., Sugo, T., Endo, T., and Kobata, A., 1993, Role of sugar chains in the in-vitro activity of recombinant human interleukin 5, Eur. J. Biochem. 211:903–908.PubMedCrossRefGoogle Scholar
  12. Kunimoto, D.Y., Allison, K.C., Watson, C., Fuerst, T., Armstrong, G.D., Paul, W., and Strober, W., 1991, High-level production of murine interleukin-5 (IL-5) utilising recombinant baculovirus expression. Purification of the rill-5 and its use in assessing the biologic role of IL-5 glycosylation. Cytokine 3:224–230.PubMedCrossRefGoogle Scholar
  13. Livi, G.P., Ferrara, A.A., Roskin, R., Simon, Pl., and Young, Pr., 1990, Secretion of N-glycosylated human recombinant interleukin-1 alpha in Saccharomyces cerevisiae. Gene 88:297–301.PubMedCrossRefGoogle Scholar
  14. Livi, G.P., Lillquist, J.S., Miles, L.M., Ferrara, A., Sathe, G.M., Simon, PI., Meyers, CA., Gorman, J.A., Young, Pr., 1991, Secretion of N-glycosylated interleukin-1 beta in Saccharomyces cerevisiae using a leader peptide from Candida albicans. Effect of N-glycosylation on biological activity, J. Biol. Chem. 266:15348–15355.PubMedGoogle Scholar
  15. Lucas, R., Magez, S., De Leys, R., Fransen, L., Scheerlinck, J.P., Rampelberg, M., Sablon, E., and De Baetselier, P., 1994, Mapping the lectin-like activity of tumor necrosis factor, Science 263:814–817.PubMedCrossRefGoogle Scholar
  16. Marchese, E., Vita, N., Maureaud, T., Ferrara, P., 1990, Separation by cation-exchange high-performance liquid chromatography of three forms of Chinese hamster ovary cell-derived recombinant human interleukin-2, J. Chromatogr. 504:351–358.PubMedCrossRefGoogle Scholar
  17. Masure, S., Nys, G., Fiten, P., Van Damme, J., and Opdenakker, G., 1993, Mouse gelatinase B: cDNA cloning, regulation of expression and glycosylation in WEHI-3 macrophages and gene organisation, Eur. J. Biochem. 218:129–141.PubMedCrossRefGoogle Scholar
  18. Masure, S., and Opdenakker, G. 1989, Cytokine-mediated proteolysis in tissue remodelling, Experientia 45:542–549.PubMedCrossRefGoogle Scholar
  19. Michaëlsson, E., Malmstrom, V., Reis, S., Engstrom, A., Burkhardt, H., and Holmdahl, R., 1994, T cell recognition of carbohvdrates on type II collagen, J. Exp. Med. 180:745–749.PubMedCrossRefGoogle Scholar
  20. Mori, K., Dwek, R.A., Downing, A.K., Opdenakker, G., and Rudd, P.M., 1995, The activation of type 1 and type 2 plasminogen by type 1 and type 2 tissue plasminogen activator, J. Biol. Chem. 270:3261–3267.PubMedCrossRefGoogle Scholar
  21. Mutsaers, J.H.G.M., Kamerling, J.P., Devos, R., Guisez, Y., Fiers, W., and Vliegenthart, J.F.G., 1986, Structural studies of the carbohydrate chains of γ-interferon, Eur. J. Biochem. 156:651–654.PubMedCrossRefGoogle Scholar
  22. Nairn, H.Y., and Lentze, M.J., 1992, Impact of O-glycosylation on the function of human intestinal lactase-phlorizin hydrolase. Characterization of glycoforms varying in enzyme activity and localization of O-glycoside addition, J. Biol. Chem. 267:25494–25504.Google Scholar
  23. Nissen, C., Dalle Carbonare, V., and Moser, Y., 1994, In vitro comparison of the biological potency of glycosylated versus nonglycosylated rG-CSF, Drug invest. 7:346–352.CrossRefGoogle Scholar
  24. Oh-eda, M., Hasegawa, M., Hattori, K., Kuboniwa, H., Kojima, T., Orita, T., Tomonou, K., Yamazaki, T., and Ochi, N., 1990, O-linked sugar chain of human granulocyte colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity, J. Biol. Chem. 265:11432–11435.PubMedGoogle Scholar
  25. Opdenakker, G., Cabeza-Arvelais, Y., and Van Damme, J., 1989, Interaction of interferon with other cytokines, Experientia 45:513–520.PubMedCrossRefGoogle Scholar
  26. Opdenakker, G., Rudd, P.M., Ponting, C.P., and Dwek, R.A., 1993, Concepts and principles of glycobiology, FASEB J. 7:1330–1337.PubMedGoogle Scholar
  27. Opdenakker, G., Rudd, P.M., Wormald, M., Dwek, R.A., and Van Damme, J., 1995, Cells regulate the activities of cytokines by glycosylation, FASEB J. 9:453–457.PubMedGoogle Scholar
  28. Opdenakker, G., and Van Damme, J., 1992, Cytokines and proteases in invasive processes: molecular similarities between inflammation and cancer, Cytokine 4:251–258.PubMedCrossRefGoogle Scholar
  29. Opdenakker, G., and Van Damme J., 1994, Cytokine-induced proteolysis in autoimmune diseases, Immunol. Today 15:104–107.CrossRefGoogle Scholar
  30. Opdenakker, G., Van Damme, J., Bosman, F., Billiau, A., and De Somer, P., 1986, Influence of carbohydrate side-chains on activity of tissue-type plasminogen activator, Proc. Soc. Exp. Biol. Med. 182:248–257.PubMedGoogle Scholar
  31. Parekh, R.B., Dwek, R.A., Thomas, J.R., Opdenakker, G., Rademacher, T.W., Wittwer, A.J., Howard, S.C., Nelson, R., Siegel, N.R., Jennings, M.G., Harakas, N.K., and Feder, J., 1989, Cell-type-speciflc and site-specific N-glycosylation of type I and type II human tissue plasminogen activator, Biochemistry 28:7644–7662.PubMedCrossRefGoogle Scholar
  32. Parekh, R.B., Dwek, R.A., Rademacher, T.W., Opdenakker, G., Van Damme, J., 1992, Glycosylation of interleukin-6 from normal human blood mononuclear cells, Eur. J. Biochem. 203:135–141.PubMedCrossRefGoogle Scholar
  33. Parkinson, J.F., Vlahos, C.J., Yan, S.C., and Bang, N.U., 1992, Recombinant human thrombomodulin. Regulation of cofactor activity and anticoagulant function by a glycosaminoglycan side chain, Biochem. J. 283:151–157.PubMedGoogle Scholar
  34. Pos, O., van der stelt, M.E., Wolbink, G.J., Nijsten, M.W., van der Tempel, G.L., and van Dijk, W., 1990, Changes in the serum concentration and the glycosylation of human alpha 1-acid glycoprotein and alpha 1-protease inhibitor in severely burned persons: relation to interleukin-6 levels, Clin. Exp. Immunol. 82:579–582.PubMedCrossRefGoogle Scholar
  35. Rademacher, T.W., Parekh, R.B., and Dwek, R.A., 1988, Glycobiology, Ann. Rev. Biochem. 57:785–838.PubMedCrossRefGoogle Scholar
  36. Riske, F.J., Cullen, B.R., Chizzonite, R., 1991, Characterisation of human interferon-gamma and human interleukin-2 from recombinant mammalian cell lines and peripheral blood lymphocytes, Lymphokine and Cytokine Res. 10:213–218.Google Scholar
  37. Rudd, P.M., Joao, H.C., Coghill, E., Fiten, P., Saunders, M.R., Opdenakker, G., and Dwek, R.A., 1994, Glycoformsmodify the dynamic stability and functional activity af an enzyme, Biochemistry 33:17–22.PubMedCrossRefGoogle Scholar
  38. Rudd, P.M., Woods, R.J., Wormald, M.R., Opdenakker, G., Downing, A.K., Campbell, I.D., and Dwek, R.A., 1995, The effects of variable glycosylation on the functional activities of ribonuclease, plasminogen and tissue plasminogen activator, Biochim. Biophys. Acta 1248:1–10.PubMedCrossRefGoogle Scholar
  39. Sherblom, A.P., Sathyamoorthy, N., Decker, J.M., and Muchmore, A.V., 1989, IL-2, a lectin with specificity for high-mannose glycopeptides, J. Immunol. 143:939–944.PubMedGoogle Scholar
  40. Tanner, J.E., Goldman, N.D., and Tosato, G., 1990, Biochemical and biological analysis of human interleukin 6 expressed in rodent and primate cells, Cytokine 2:363–374.PubMedCrossRefGoogle Scholar
  41. Thor, G., Brian, A.A., 1992, Glycosylation variants of murine interleukin-4: evidence for different functional properties, Immunology 75:143–149.PubMedGoogle Scholar
  42. Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., Elliston, K.O., Ayala, J.M., Casano, F.J., Chin, J., Ding, G. J.-F., Egger, L.A., Gaffney, E.P., Limjuco, G., Palyha, O.C., Raju, S.M., Rolando, A.M., Salley, J.P., Yamin, T.-T., Lee, T.D., Shively, J.E., MacCross, M., Mumford, R.A., Schmidt, J.A., and Tocci, M.J., 1992, A novel heterodimeric cysteine protease is required for interleukin-1ß processing in monocytes, Nature 356:768–774.PubMedCrossRefGoogle Scholar
  43. Tominaga, A., Takahashi, T., Kikuchi, Y., Mita, S., Naomi, S., Harada, N., Yamaguchi, N., and Takatsu, K., 1990, Role of carbohydrate moiety of IL-5. Effect of tunicamycin on the glycosylation of IL-5 and the biologic activity of deglycosylated IL-5, J. Immunol. 144:1345–1352.PubMedGoogle Scholar
  44. Van Damme, J., De Ley, M., Opdenakker, G., Billiau, A., De Somer, P., and Van Beeumen, J., 1985, Homogeneous interferon-inducing 22K factor is related to endogenous pyrogen and interleukin-1, Nature 314:266–268.PubMedCrossRefGoogle Scholar
  45. Wittwer, A.J., Howard, S.C., Carr, L.S., Harakas, N.K., Feder, J., Parekh, R.B., Rudd, P.M., Dwek, R.A., Rademacher, T.W., 1989, Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator, Biochemistry 28:7662–7669.PubMedCrossRefGoogle Scholar
  46. Ziltener, H.J., 1993, Glycosylation does not affect in vitro biological activity of interleukin-3, Cytokine 5:291–297.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Philippe Van den Steen
    • 1
  • Pauline M. Rudd
    • 2
  • Raymond A. Dwek
    • 2
  • Jo Van Damme
    • 1
  • Ghislain Opdenakker
    • 1
    • 2
    • 3
  1. 1.The Rega Institute, Laboratory of Molecular ImmunologyUniversity of LeuvenLeuvenBelgium
  2. 2.The Glycobiology Institute, Department of BiochemistryUniversity of OxfordOxfordUK
  3. 3.Rega InstituteLeuvenBelgium

Personalised recommendations