A Longitudinal Study of Glycosylation of a Human IgG3 Paraprotein in a Patient with Multiple Myeloma

  • Muhammad Farooq
  • Noriko Takahashi
  • Mark Drayson
  • John Lund
  • Royston Jefferis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 435)


The IgG antibody molecule is a structural paradigm for members of the immuoglobulin super family1. Whilst the oligosaccharide moiety of the IgG molecule accounts for only 23% of its mass it has been shown to be essential for optimal activation of effector mechanisms leading to the clearance and destruction of pathogens2, 3, 4. Human antibody molecules of the IgG class have N-linked oligosaccharide attached at the amide side chain of Asn-297 in the heavy chain5. The oligosaccharide moiety is of the complex bianntennary type having a heptasaccharide “core” structure (GlcNAc2Man3GlcNAc2) and variable outer arm “non-core” sugar residues, such as fucose, bisecting N-acetylglucosamine, galactose and sialic acid (Figure 1). The number of variant oligosaccharides that may be attached to heavy chains is 32 (Figure 2) and the total number of possible glycoforms >8006,7. This level of heterogeneity is evident for polyclonal IgG whilst a more restricted heterogeneity may be observed for monoclonal proteins4. In addition, ~30% of polyclonal IgG has been reported to bear a complex N- linked oligosaccharide in the Fab region8. It is apparent, therefore, that glycosylation is a post-translational modification that can introduce a very significant structural and, possibly, functional heterogeneity into the IgG molecule, such that glycoforms can alter the biological activity9.


Multiple Myeloma Sialic Acid Plateau Phase HPLC Profile Amide Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Williams, A. N. Barclay, The immunoglobulin super family-domains for cell surface recognition, Ann. Rev. Imm. 6: 381–405 (1988).CrossRefGoogle Scholar
  2. 2.
    S. L. Morrison, In vitro antibodies-strategies for production and application, Ann Rev Immunol. 10: 239–265 (1992).CrossRefGoogle Scholar
  3. 3.
    R. Jefferis and J. Lund, Molecular characterisation of IgG antibody Fc effector sites, In protein engineering of antibody molecules for prophylactic and therapeutic applications in man, M. Clarke, Ed. Academic press NY p115 (1995)Google Scholar
  4. 4.
    J. Lund, N. Takahashi, S. Hindley, R. Tyler, M. Goodall, and R. Jefferis, Glycosylation of human IgG subclass and mouse IgG2b heavy chains secreted by mouse J558L transfectoma cell lines as chimeric antibodies, Human Antibodies and Hybridomas. 4: 20–25 (1993).PubMedGoogle Scholar
  5. 5.
    J. Lund, N. Takahashi, H. Nakagawa, T. Bentley, S. Hindley, R. Tyler, M. Goodall and R. Jefferis, Control of IgG/Fc glycosylation: A comparison of oligosaccharides from chimeric human/mouse and mouse immunoglobulin G’s, Mol Immunol. 30: 741–748 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Jefferis, J. Lund, H. Mizutani, H. Nakagawa, Y. Kawazo, Y. Arata, and N. Takahashi, A comparative study of N-linked oligosaccharide structures of human IgG subclass proteins, Biochem J. 268: 529–537 (1990).PubMedGoogle Scholar
  7. 7.
    T. Mizuochi, T. Taniguchi, A. Shimizu, and A. Kobata, Structural and numerical variations of the carbohydrate moiety of IgG, J. Immunol. 129: 2016–2020 (1982).PubMedGoogle Scholar
  8. 8.
    T. W. Rademacher, and R A. Dwek, Prog Immun. 5: 95–112 (1983).CrossRefGoogle Scholar
  9. 9.
    R. Malhotra, M. R. Wormald, P. M. Rudd, P. B. Fischer, R. A. Dwek and R. B. Sim, Glycosylation changes of IgG associated rheumatoid arthritis can activate complement via the MBP, Nature Medicine. vol 1 No 6: 599Google Scholar
  10. 10.
    R. B. Parekh, R. A. Dwek, B. J. Sutton, D. L. Fernandes, A. Leung, D. Stanworth, T. W. Rademacher, T. Mizuochi, T. Taniguchi, K. Matsuta, F. Takeuchi, Y. Nagano, T. Miyamoto and A. Kobata, Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG, Nature. 316:452–457 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    R. B. Parekh, D. A. Isenburg, B. M. Ansell, I. M. Roitt, R. A. Dwek, and T. W. Rademacher, Galactosylation of IgG associated oligosaccharides-reduction in patients with adult andjuvenile onset rheumatoid arthritis and relation to disease activity, Lancet. i: 966–969 (1988).CrossRefGoogle Scholar
  12. 12.
    R. B. Parekh, D. A. Isenburg, G. Rook, I. M. Roitt, R. A. Dwek, and T. W. Rademacher, A comparative analysis of disease associated changes in the galactosylation of serum IgG, J. Autoimmunity. 2: 101–114 (1989).CrossRefGoogle Scholar
  13. 13.
    G. A. W. Rook, J. Steele, R. Brearley, A. Whyte, D. A. Isenburg, N. Sumar, J. L. Nelson, K. B. Bodman, A. Young, I. M. Roitt, P. Williams, I. Scragg, C. J. Edge, P. D. Arkwright, D. Ashford, M. Wormald, P. Rudd, C. W. G. Redman, R. A. Dwek, and T. W. Rademacher, Changes in the IgG glycoform levels are associated with remission of arthritis during pregnancy, J. Autoimmunity. 779–794 (1991).Google Scholar
  14. 14.
    N. Takahashi, H. Nakagawa, K. Fujikawa, Y. Kawamura, and N. Tomiya, Three dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides, Anal. Biochem. 226: 139 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Yamamoto, S. Hase, S. Fukuda, O. Sano, and T. Ikenaka, Structures of the sugar chains of interferon-γ produced by human myelomonocyte cell line HBL-38, J. Biochem. 105: 547 (1989).PubMedGoogle Scholar
  16. 16.
    N. Tomiya, J. Awaya, M. Kurono, S. Endo, Y. Arata, and N. Takahashi, Analysis of N-linked oligosaccharides using a two dimensional mapping technique, Anal. Biochem. 171:73(1988)PubMedCrossRefGoogle Scholar
  17. 17.
    M. Farooq, N. Takahashi, H. Arrol, M. Drayson, and R. Jefferis, Glycosylation of IgG antibody molecules in multiple myeloma, Glycoconjugate J. In press (1996).Google Scholar
  18. 18.
    D. R. Anderson, P. H. Atkinson and W. J. Grimes, Major carbohydrate structures at five glycosylation sites on murine IgM determined by high resolution 1H-NMR spectroscopy, Arch. Biochem. Biophys. 13: 605–618 (1985).CrossRefGoogle Scholar
  19. 19.
    R. J. Rothman, L. Warren, J. F. G. Vliegenhart, and K. J. Hard, Clonal analysis of the glycosylation of immunoglobulin G secreted by murine hybridomas, Biochemistry. 28:1377–1384 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Fujii, T. Nishiura, A. Nishikawa, R. Miura and N. Taniguchi, Structural heterogeneity of sugar chains in immunoglobulin G, J. Biol Chem. 265: 6009–6018 (1990).PubMedGoogle Scholar
  21. 21.
    S. Narasimhan, J. C. Freed, and H. Schachter, Control of glycoprotein synthesis. Bovine milk UDP-galactose: N-acetylglucosamine β-4-Galactosyltransferase catalyzes the preferential transfer of galactose to the GlcNAcβ1,2Manα1,3-branch of both bisected and non-bisected complex biantennary asparagine-linked oligosaccharides, Biochemistry. 24: 1694–1700 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Muhammad Farooq
    • 1
  • Noriko Takahashi
    • 2
  • Mark Drayson
    • 1
  • John Lund
    • 1
  • Royston Jefferis
    • 1
  1. 1.Department of ImmunologyThe University of Birmingham Medical SchoolEdgbaston, BirminghamUK
  2. 2.Glycolab Nakano Vinegar CompanyHanda City 475Japan

Personalised recommendations