Skip to main content

Muscle Energy Metabolism in Human Adenylosuccinase Deficiency

An in Vivo 31P-NMR Spectroscopy Study

  • Chapter
Purine and Pyrimidine Metabolism in Man IX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 431))

  • 24 Accesses

Abstract

Adenylosuccinate lyase (EC 4.3.2.2; ASase) catalyses two steps in the synthesis of purine nucleotides: the conversion of succinylaminoimidazole carboxamide (SAICA) ribotide into aminoimidazole carboxamide (AICA) ribotide along the de novo pathway and the formation of AMP from adenylosuccinate in the conversion of IMP into adenine nucleotides. Both reactions involve the cleavage of a succinyl group, yielding fumarate.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. R. Redinbo, S. M. Eide, R. L. Stone, J. E. Dixon, and T. O. Yeates, Crystallization and preliminary structural analysis of Bacillus subtilis adenylosuccinate lyase, an enzyme implicated in infantile autism. Protein Science 5: 786–788 (1996)

    Article  PubMed  CAS  Google Scholar 

  2. J. Jaeken and G. Van den Berghe. An infantile autistic syndrome characterized by the presence of succinylpurines in body fluids, Lancet 2: 1058–1061 (1984)

    PubMed  CAS  Google Scholar 

  3. J. Jaeken, S. K. Wadman, M. Duran, F. J. Van Sprang, F. A. Beemer, R. A. Holl, P. M. Theunissen, P. De Cock, F. Van den Bergh, M. F. Vincent, and G. Van den Berghe. Adenylosuccinase deficiency: an inborn error of purine nucleotide synthesis. Eur. J. Pediatr. 148: 126–131 (1988)

    Article  PubMed  CAS  Google Scholar 

  4. C. Salerno, C. Crifó, and O. Giardini. Adenylosuccinase deficiency: a patient with impaired erythrocyte activity and anomalous response to intravenous fructose. J. Inher. Metab. Dis. 18: 602–608 (1995)

    Article  PubMed  CAS  Google Scholar 

  5. C. Salerno, S. Iotti, R. Lodi, C. Crifò, and B. Barbiroli. Failure of muscle energy metabolism in a patient with adenylosuccinate lyase deficiency: an in vivo study by phosphorus NMR spectroscopy. Biochim. Biophys. Acta (1997) in press

    Google Scholar 

  6. D. Arnold, P. M. Matthews, and G. K. Radda. Metabolic recovery after exercise and the assessment of mitochondrial function in human skeletal muscle in vivo by means of 31P-NMR. Magn. Reson. Med. 1: 307–315 (1984)

    Article  PubMed  CAS  Google Scholar 

  7. B. Chance, J. S. Leigh, J. Kent, K. K. McCully, S. Nioka, B. J. Clark, J. M. Maris, and T. Graham. Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc. Natl. Acad. Sci. USA 83: 9458–9462 (1986)

    Article  PubMed  CAS  Google Scholar 

  8. S. Iotti, R. Lodi, G. Gottardi, P. Zaniol, and B. Barbiroli. Inorganic phosphate is transported into mitochondria in the absence of ATP biosynthesis. An in vivo 31P NMR study in the human skeletal muscle. Biochem. Biophys. Res. Commun. (1996) 225: 191–194

    Article  PubMed  CAS  Google Scholar 

  9. J. J. Aragon and J. M. Lowenstein. The purine-nucleotide cycle: comparison of the levels of citric acid cycle intermediates with the operation of the purine nucleotide cycle in rat skeletal muscle during exercise and recovery from exercise. Eur. J. Biochem. 110: 371–377 (1980)

    Article  PubMed  CAS  Google Scholar 

  10. M. E. Young, G. K. Radda, and B. Leighton. Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR—an activator of AMP-activated protein kinase. FEBS Letters 382: 43–47 (1996)

    Article  PubMed  CAS  Google Scholar 

  11. K. Tornheim and J. M. Lowenstein. The purine nucleotide cycle: control of phosphofructokinase and glycolytic oscillation in muscle extracts. J. Biol. Chem. 250: 6304–6308 (1975)

    PubMed  CAS  Google Scholar 

  12. R. L. Sabina, J. L. Swain, B. M. Patten, T. Ashizawa, W. E. O’Brien, and E. W. Holmes. Disruption of the purine nucleotide cycle: a potential explanation for muscle dysfunction in myoadenylate deaminase deficiency. J. Clin. Invest. 66: 1419–1423 (1980)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salerno, C., Iotti, S., Lodi, R., Crifò, C., Barbiroli, B. (1998). Muscle Energy Metabolism in Human Adenylosuccinase Deficiency. In: Griesmacher, A., Müller, M.M., Chiba, P. (eds) Purine and Pyrimidine Metabolism in Man IX. Advances in Experimental Medicine and Biology, vol 431. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5381-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5381-6_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7456-5

  • Online ISBN: 978-1-4615-5381-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics