Skip to main content

Regulation of Human PRS Isoform Expression

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 431))

Abstract

PRPP is a substrate in the synthesis of virtually all nucleotides1 and is also an important regulator of the de novo pathways of purine2 and pyrimidine3 nucleotide synthesis. Formation of PRPP is catalyzed in eukaryotes by a family of PRPP synthetase (PRS; EC2.7.6.1) isoforms.4–6 The substrates in the reaction are MgATP and Rib-5-P, and Mg2+ and P1 are essential activators. Inhibitors of PRS activity include: purine, pyrimidine, and pyridine nucleotides; reaction products; and 2,3-diphosphoglycerate.4,5,7 Human erythrocyte PRS is composed of a polypeptide subunit of 34.5 kD which undergoes concentration-dependent and effector-mediated reversible aggregation in vitro to active forms of 16 and 32 subunits.4,8 The primary structure and kinetic and physical properties of purified human erythrocyte PRS are those of the purified recombinant PRS 1 isoform.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, M.A., Raivio, K.O., and Seegmiller, J.E., Synthesis of phosphoribosylpyrophosphate in mammalian cells. Adv. Enzymol. Relat. Areas. Mol. Biol. 49: 281 (1979).

    PubMed  CAS  Google Scholar 

  2. Becker, M.A., and Kim, M., Regulation of rates of purine synthesis de novo by purine nucleotides and phosphoribosylpyrophosphate. J. Biol. Chem. 262: 14531 (1987).

    PubMed  CAS  Google Scholar 

  3. Tatibana, M. and Shigesada, K., Two carbamyl phosphate synthetases of mammals:Specific roles in control of pyrimidine and urea biosynthesis. Adv. Enzyme Regul Adv. Enzyme Regul. 10: 249 (1972).

    Article  CAS  Google Scholar 

  4. Nosal, J.M., Switzer, R.L., and Becker, M.A., Overexpression, purification, and characterization of recombinant human 5-phosphoribosyl-l-pyrophosphate synthetase isozymes I and II. J. Biol. Chem. 268: 10168 (1993).

    PubMed  CAS  Google Scholar 

  5. Ishijima, S., Kita, K., Ahmad, I., Ishizuka, T., Taira, M., and Tatibana M., Expression of rat phosphoribosylpyrophosphate synthetase subunits I and II in Escherichia coli. Isolation and characterization of the recombinant isoforms. J. Biol. Chem. 266: 15693 (1992).

    Google Scholar 

  6. Taira, M., Iizasa, T., Shimada, H., Kudoh, J., Shimizu, N., and Tatibana M, A human testis-specific mRNA for phosphoribosylpyrophosphate synthetase that initiates from a non-AUG codon. J. Biol. Chem. 265: 16491 (1990).

    PubMed  CAS  Google Scholar 

  7. Fox, I.H., and Kelley, W.N., Human phosphoribosylpyrophosphate synthetase:Kinetic mechanism and end product inhibition. J. Biol. Chem. 247: 2126 (1972).

    PubMed  CAS  Google Scholar 

  8. Meyer, L. J., and Becker, M.A., Human erythrocyte phosphoribosylpyrophosphate synthetase. Dependence of activity on state of subunit association. J. Biol Chem. 252: 3919 (1977).

    PubMed  CAS  Google Scholar 

  9. Taira, M., Iizasa, T., Yamada, K., Shimada, H., and Tatibana, M., Tissue-differential expression of two distinct genes for phosphoribosylpyrophosphate synthetase and existence of the testis-specific transcript. Biochim. Biophys. Acta 1007: 203 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. Ishizuka, T., Iizasa, T., Taira, M., Ishijima, S., Sonoda, T., Shimada, H., Nagatake, N., and Tatibana, M., Promoter regions of the human X-linked housekeeping genes PRPS1 and PRPS2 encoding phosphoribosylpyrophosphate synthetase subunit I and II isoforms. Biochim. Biophys. Acta 1130: 139 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. Ishijima, S., Kita, K., and Tatibana, M., External Mg2+-dependent early stimulation of nucleotide synthesis in Swiss 3T3 cells. Am. J. Physiol. 257 (Cell Physiol. 26): C1113 (1989).

    PubMed  CAS  Google Scholar 

  12. Becker, M.A., Heidler, S.A., Nosal, J.M., Switzer, R.L., LeBeau, M.M., Shapiro, L.J., Palella, T.D., and Roessler, B.J., Human phosphoribosylpyrophosphate synthetase (PRS)2:An independently active, X chromosome-linked PRS isoform. Adv. Exp. Med. Biol. 309B: 129 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. Kita, K., Ishizuka, T., Ishijima, S., Sonoda, T., and Tatibana, M., A novel 39-kDa phosphoribosylpyrophosphate synthetase-associated protein of rat liver. J. Biol. Chem. 269: 8334 (1994).

    PubMed  CAS  Google Scholar 

  14. Sonoda, T., Ishizuka, T., Kita, K., Ishijima, S., and Tatibana, M., Cloning and sequencing of rat cDNA for the 41-kDa phosphoribosylpyrophosphate synthetase-associated protein has a high homology to the catalytic subunits and the 39-kDa associated protein. Biochim. Biophys. Acta 1350: 6 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Taira, M., Ishijima, S., Kita, K., Yamada, K., Iizasa, T., and Tatibana, M., Nucleotide and deduced amino acid sequences of two distinct cDNAs for rat phosphoribosylpyrophosphate synthetase. J. Biol. Chem. 262: 14867 (1987).

    PubMed  CAS  Google Scholar 

  16. Becker, M.A., Heidler, S.A., Bell, G.I, Seino, S., LeBeau, M.M., Westbrook, C.A., Neuman, W., Shapiro, L.J., Mohandas, T.K., Roessler, B.J., and Palella, T.D., Cloning of cDNAs for human phosphoribosylpyrophosphate synthetases 1 and 2 and X chromosome localization of PRPS1 and PRPS2 genes. Genomics 8: 555 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. Becker, M.A., Taylor, W., Smith, P.R., and Ahmed, M., Overexpression of the normal phosphoribosylpyrophosphate synthetase isoform 1 underlies catalytic superactivity of human phosphoribosylpyrophosphate synthetase. J. Biol. Chem. 271: 19894 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. Becker, M.A., Puig, J.G., Mateos, F.A., Jimenez, M.L., Kim, M., and Simmonds, H.A., Inherited superactivity of phosphoribosylpyrophosphate synthetase:Association of uric acid overproduction and sensorineural deafness. Am. J. Med. 85: 383 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. Becker, M.A., Smith, P.R., Taylor, W., Mustafi, R., and Switzer, R.L., The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity. J. Clin. Invest. 96: 2133 (1995). Biophys. Acta 1207:126 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Becker, M.A., Taylor, W., Smith, P.R., Ahmed, M. (1998). Regulation of Human PRS Isoform Expression. In: Griesmacher, A., Müller, M.M., Chiba, P. (eds) Purine and Pyrimidine Metabolism in Man IX. Advances in Experimental Medicine and Biology, vol 431. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5381-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5381-6_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7456-5

  • Online ISBN: 978-1-4615-5381-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics