Skip to main content
Book cover

Kindling 5 pp 327–348Cite as

Amygdala Kindling and Rodent Anxiety

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 48))

Abstract

Kindling of the mammalian limbic system has been suggested as a model of epileptogenesis in complex partial seizure disorder2 (CPS). The most commonly agreed upon problems of an affective nature associated with epilepsy are anxiety and depression2,42,87. An extensive literature implicates the amygdala in the production of fearful and anxiety related states in animals and humans. It is of interest, then, that anterior temporal lobectomy in human epileptics resecting the amygdala and the anterior hippocampus reduces a preexisting anxiety disorder43. Data like these, and a great deal of other data1, implicate alteration of amygdala functioning in affective disturbance in epilepsy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamec, R., Amygdala Kindling and Anxiety in the Rat, NeuroReport,1 (1990) 255–258.

    Article  PubMed  CAS  Google Scholar 

  2. Adamec, R., Does kindling model anything clinically relevant?, Biol. Psychiat., 27 (1990) 249–279.

    Article  PubMed  CAS  Google Scholar 

  3. Adamec, R., Behavioral and epileptic determinants of predatory attack behaviour in the cat. In: J.A. Wada (Ed.). Kindling, Raven Press, New, York, (1976), pp. 135–154.

    Google Scholar 

  4. Adamec, R., Normal and abnormal limbic system mechanisms of emotive biasing, In: K.E. Livingston and O. Hornykiewicz (Eds.), Limbic Mechanisms, Plenum Press. New York, (1978), pp. 405–455.

    Google Scholar 

  5. Adamec, R., Partial Kindling of the Ventral Hippocampus:Identification of Changes in Limbic Physiology which Accompany Changes in Feline Aggression and Defence, Physiol. Behay., 49 (1991) 443–453.

    Article  CAS  Google Scholar 

  6. Adamec, R., Individual differences in temporal lobe sensory processing of threatening stimuli in the cat, Physiol. Behay.. 49 (1991) 455–464.

    Article  CAS  Google Scholar 

  7. Adamec, R., Transmitter systems involved in neuroplasticity underlying increased anxiety and defence following traumatic stress, Neuroscience and Biobehavioral Reviews, (1996) in press.

    Google Scholar 

  8. Adamec, Robert E. and McKay, D., Amygdala kindling, anxiety and corticotrophin releasing factor (CRF), Physiol. Behay., 54 (1993) 423–431.

    Article  CAS  Google Scholar 

  9. Adamec, R., Morgan, H. (1994) The effect of kindling of different nuclei of the amygdala on anxiety in the rat, Physiol. Behay., 55 (1994) 1–12.

    Article  CAS  Google Scholar 

  10. Adamec, R. (1994) Modelling anxiety disorders following chemical exposures, Tox. Indust. Health, 10 (1994) 391–420.

    CAS  Google Scholar 

  11. Adamec, R. and Stark-Adamec, C., Partial kindling and emotional bias in the cat: Lasting after-effects of partial kindling of ventral hippocampus. I: Behavioral Changes, Behay. Neue Biol, 38 (1983) 205–222.

    Article  CAS  Google Scholar 

  12. Adamec, R. and Stark-Adamec, C., Partial kindling and emotional bias in the cat: Lasting after-effects of partial kindling of ventral hippocampus. II: Physiological Changes, Behay. Neue. Biol, 38 (1983) 223–239.

    Article  CAS  Google Scholar 

  13. Adamec, R. and Stark-Adamec, C., Limbic kindling and animal behavior-Implications for human psychopathology associated with complex partial seizures., Biol. Psychiat., 18 (1983) 269–293.

    PubMed  CAS  Google Scholar 

  14. Adamec, R.E. and Stark-Adamec, C. (1986). Partial kindling and behavioral change Some rules governing the behavioral outcome of repeated limbic seizures, In: Juhn Wada (Ed.), Kindling 3, Raven Press, New York, (1986), pp. 195–212.

    Google Scholar 

  15. Bagshaw, E.V. and Evans, M.H., Measurement of current spread from microelectrodes when stimulating within the central nervous system, Exp. Brain Res., 25 (1976) 391–400.

    Article  PubMed  CAS  Google Scholar 

  16. Blanchard, D.C., Blanchard, R.J. and Rodgers, R.J., Pharmacological and neural control of anti-predator defense in the rat, Aggressive Behavior, 16 (1990) 165–175.

    Article  CAS  Google Scholar 

  17. Bloom, F.E. and Young, W.G., Brain Browser. Academic Press, New York, (1993).

    Google Scholar 

  18. Canteras, N.S., Simerly, R.B. and Swanson, L.W., Connections of the posterior nucleus of the amygdala, J. Comp. Neural., 324 (1992) 143–179.

    Article  CAS  Google Scholar 

  19. Chapman, P.F. and Bellavance, L.L., Induction of long-term potentiation in the basolateral amygdala does not depend on NMDA receptor activation, Synapse, 11 (1992) 310–318.

    Article  PubMed  CAS  Google Scholar 

  20. Csernansky, J.G., Mellentin, J., Beauclair, L., and Lombrozo, L., Mesolimbic dopaminergic supersensitivity following electrical kindling of the amygdala, Biol. Psychiatry, 23 (1988) 285–294.

    Article  PubMed  CAS  Google Scholar 

  21. Csernansky J.G., Kerr S., Pruthi R., Prosser E.S., Mesolimbic dopamine receptor increases two weeks following hippocampal kindling, Brain Res., 449 (1988) 357–60

    Article  PubMed  CAS  Google Scholar 

  22. Dauge, V., Dor, A., Feger, J. and Roques, B.P., The behavioral effects of CCK8 injected into the medial nucleus accumbens are dependent on the motivational state of the rat, Eue J. Pharmacol., 163 (1989) 25–32.

    Article  CAS  Google Scholar 

  23. Dauge, V., Steimes, V., Derrien, M., Beau, N., Roques, B.P. an Feger, J., CCK8 effects on motivational and emotional states of rat involve CCK-A receptors of the postero-median part of the nucleus accumbens, Pharm. Biochem. Behay., 34 (1989) 157–163.

    Article  CAS  Google Scholar 

  24. deCabo, C., DeSousa, N.J., Traubici, M.E. and Vaccarino, F.J., Anxiety-like response I the plus maze is predicted by combined individual differences in sugar feeding and novel exploration, Soc. Neurosci. Abstr, 21 (1995) 448.

    Google Scholar 

  25. D’Aquila, P.S., Brain, P. and Wilner, P., Effects of chronic mild stress on performance in behavioural tests relevant to anxiety and depression, Physiol. Behay. 56 (1994) 861–7.

    Article  Google Scholar 

  26. De Olmos, J.S., The amygdaloid projection field in the rat as studied with cupric-silver method, In B.E. Eleftheriou (Ed.) The Neurobiology of the Amygdala. Plenum Press, New York (1972), pp. 145–204.

    Chapter  Google Scholar 

  27. Derrien, M., Durieux, C., Dauge, V., Roques, B.P., Involvement of D. dopamine receptors in the emotional and motivational responses induced by injection of CCK8 in the posterior part of the nucleus accumbens, Brain Res., 617 (1993) 181–188.

    Article  PubMed  CAS  Google Scholar 

  28. Dreifuss, J.J., Effects of electrical stimulation of the amygdaloid complex on ventromedial hypothalamus. In. B.E. Eleftheriou (Ed.) The Neurobiology of the Amygdala, Advances in Behavioral Biology, Vol. 2, Plenum Press, New York, (1972), pp. 295–318.

    Chapter  Google Scholar 

  29. Einat, H. and Szechtman, H., An anxiolytic-like effect of quinpirole in the plus maze. Abstracts of the Canadian College of Neuropsychopharmacology, 19th Annual Meeting, June 2–5, 1996.

    Google Scholar 

  30. Engel, J. Jr., Wolfson, L. and Brown, L., Anatomical correlates of electrical and behavioral events related to amydaloid kindling, Ann. Neurol., 3 (1978) 538–544.

    Article  PubMed  Google Scholar 

  31. File, S.E., Johnston, A.L. and Baldwin, H.A., Anxiolytic and anxiogenic drugs: changes in behavior and endocrine responses, Stress Med., 4 (1988) 221–230.

    Article  Google Scholar 

  32. Flor-Henry, P., Epilepsy and psychopathology, In K. Granville-Grossman (Ed.) Recent Advances in Clinical Psychiatry. Churchill Livingston, New York (1976), pp. 262–294.

    Google Scholar 

  33. Gean, P.-W., Chang, F.-C., Huang, C.-C., Lin, J.-H. and Way, L.-J., Long-term enhancement of EPSP and NMDA receptor-mediated synaptic transmission in the amygdala, Brain Research Bull., 31 (1993) 7–11

    Article  CAS  Google Scholar 

  34. Gelbard HA, Applegate CD Persistent increases in dopamine D2 receptor mRNA expression in basal ganglia following kindling, Epilepsy Res., 17 (1994) 23–9

    Article  PubMed  CAS  Google Scholar 

  35. Gomez, d. M. and Winans Newman, S., Differential projections of the anterior and posterior regions of the medial amygdaloid nucleus in the syrian hamster, J. Comp. Neurol., 317 (1992) 195–218.

    Article  PubMed  CAS  Google Scholar 

  36. Graeff, F.G., Silveira, M.C.L., Nogueira, R.L., Audi, E.A. and Oliveira, R.M.W., Role of the amygdala and periaqueductal gray in anxiety and panic, Behay. Brain Res., 58 (1993) 123–131.

    Article  CAS  Google Scholar 

  37. Gray, T.S. and Magnuson, D.J., Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat, Peptides, 13 (1992) 451–460.

    Article  PubMed  CAS  Google Scholar 

  38. Harrigan, E.A., Magnuson, D.J., Thunstedt, G.M. and Gray, T.S., Corticotropin releasing factor neurons are innervated by calcitonin gene-related peptide terminals in the rat central amygdaloid nucleus, Brain Res. Bull., 33 (1994) 529–534.

    Article  PubMed  CAS  Google Scholar 

  39. Helfer, V., Deransart, C., Marescaux, C. and Depaulis, A., Amygdala kindling in the rat: anxiogenic-like consequences, Neuroscience, (1996) in press.

    Google Scholar 

  40. Heinrichs, S.C., Pich, E.M., Miczek, K.A., Britton, K.T. and Koob, G.F., Corticotropin-releasing factor antagonist reduces emotionality in socially defeated rats via direct neurotropic action, Brain Res., 581 (1992) 190–197.

    Article  PubMed  CAS  Google Scholar 

  41. Henke, P.G. and Sullivan, R.M., Kindling in the amygdala and susceptibility to stress ulcers, Brain Res. Bull., 14 (1985) 5–8

    Article  PubMed  CAS  Google Scholar 

  42. Hermann, B.P. and Whitman, S., Behavioral and personality correlates of epilepsy: A review, methodological critique, and conceptual model., Psych. Bull., 95 (1984) 451–497.

    Article  CAS  Google Scholar 

  43. Hermann, B.P., Wyler, A.R., Ackerman, B. and Rosenthal, T., Short-term psychological outcome of anterior temporal lobectomy, J. Neurosurg. [JD3J]., 71 (1989) 327–334.

    Article  CAS  Google Scholar 

  44. Hooks, M.S., Jones, G.H., Smith, A.D., Neill, D.B. and Justice, J.B., Response to novelty predicts the loco-motor and nucleus accumbens dopamine response to cocaine, Synapse, 9 (1991) 121–128.

    Article  PubMed  CAS  Google Scholar 

  45. Kaada, B.R., Stimulation and regional ablation of the amygdaloid complex with reference to functional representations, In B.E. Eleftheriou (Ed.) The Neurobiology of the Amygdala, Advances in Behavioral Biology, Vol. 2, Plenum Press, New York, (1972), pp. 205–282.

    Chapter  Google Scholar 

  46. Kalynchuk, L.E., Pinel, J.P.J., Treit, D. and Kippin. T.E., Changes in emotional behavior produced by longterm amygdala kindling in rats, Biol. Psychiat., (1996) (in press).

    Google Scholar 

  47. Kalynchuk, L.E., Pinel, J.P.J., Barr,K.N., Kippin,T.E. and Treit, D., Amygdala kindling in rats results in increased defensive behavior which is lasting but not permanent, Neuroscience and Biobehavioral Reviews, Abstract (1996), in press.

    Google Scholar 

  48. Ladurelle, N, Roques, B.P., and Dauge, V., The transfer of rats from a familiar to a novel environment prolongs the increase of extracellular dopamine efflux induced by CCK8 in the posterior nucleus accumbens, J. Neurosci., 15 (1995) 3118–27.

    PubMed  CAS  Google Scholar 

  49. Luiten, P.G.M., Ono, T., Hishijo, H. and Fukuda, M., Differential input from the amygdaloid body to the ventromedial hypothalamic nucleus in the rat, Neurosci. Lett., 35 (1983) 253–258.

    Article  PubMed  CAS  Google Scholar 

  50. Maeda, H. and Hirata, K., Two-stage amygdaloid lesions and hypothalamic rage: A method useful for detecting functional localization, Physiol. Behay., 21 (1978) 529–530.

    Article  CAS  Google Scholar 

  51. Makino, S., Gold, P.W., Schulkin, J., Coricosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus, Brain Res., 640 (1994) 105–112.

    Article  PubMed  CAS  Google Scholar 

  52. Merlo Pich, E., Koob, G.F., Sattler, S.C., Menzaghi, F., Heilig, M., Heinrichs, S.C., Vale, W. and Weiss, F., Stress-induced release of corticotropin releasing factor in the amygdala measured by in vivo microdialysis, Soc. Neurosci. Abstr, 18 (1992) 535

    Google Scholar 

  53. McIntyre, D., Amygdala kindling and muricide in rats, Physiol. Behay., 21 (1978) 49–56.

    Article  CAS  Google Scholar 

  54. Murphy, J.T., The role of the amygdala in controlling hypothalamic output, In. In B.E. Eleftheriou (Ed.) The Neurobiology of the Amygdala, Advances in Behavioral Biology, Vol. 2, Plenum Press, New York, (1972), pp. 371–96.

    Chapter  Google Scholar 

  55. Narita, K., Yokawa, T., Nishihara, M. and Takahashi, M., Interaction between excitatory and inhibitory amino acids in the ventromedial nucleus of the hypothalamus in inducing hyper-running, Brain Res., 603 (1993) 243–247.

    Article  PubMed  CAS  Google Scholar 

  56. Nieminen, s., Sirvio,J., Teittinen, K., Pitkanen, A., Airaksinen, M.M., and Riekkinen, P., Amygdala kindling increased fear-repsonse, but did not impair spatial memory in rats, Physiol. Behay., 51 (1992) 845–849.

    Article  CAS  Google Scholar 

  57. Oakes, M.E. and Coover, G.D., Aggression and social behavior after four different medial hypothalamic lesions, Soc. Neurosci. Abstr, 19 (1993)

    Google Scholar 

  58. Ogawa, S., Kow, L.-M. and Pfaff, D.W., Effects of GABA and related agents on the electrical activity of hypothalamic ventromedial nucleus neurons in vitro, Experimental Brain Research, 85 (1991) 85–92.

    Article  CAS  Google Scholar 

  59. Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates,Second Edition, Academic Press, London, 1986.

    Google Scholar 

  60. Piazza, P.V., Rogue-Pont, F., Deminier, J.M., Kharouby, M., LeMoal, M., Simon, H.. Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration, Brain Res., 567 (1991) 169–174.

    Article  PubMed  CAS  Google Scholar 

  61. Pinel, J.P.J., Effects of kindling on rodent defense (this volume).

    Google Scholar 

  62. Pinel, J.P.J., Treit, D and Rovner,L.L, Temporal lobe aggression in the rats, Science, 197 (1977) 1088–1089.

    Google Scholar 

  63. Post, R., Squillace, K.M., Pert, A. and Sass, W., The effect of amygdala kindling on spontaneous and cocaine-induced activity and lidocaine seizures, Psychopharmacology, 72 (1981) 189–196.

    Article  PubMed  CAS  Google Scholar 

  64. Priestley, T., The effect of baclofen and somatostatin on neuronal activity in the rat ventromedial hypothalamic nucleus in vitro, Neuropharmacology, 31 (1992) 103–109.

    Article  PubMed  CAS  Google Scholar 

  65. Racine,R.J, Milgran,N.W. and Hafner, S., Long-term potentiation phenomena in the rat limbic forebrain, Brain Res., 260 (1983) 217–231.

    Article  PubMed  CAS  Google Scholar 

  66. Rada, P. and Hernandez, L., Opposite changes of dopamine turnover in prefrontal cortex and nucleus accumbens after amygdaloid kindling, Neurosci.Lett., 117 (1990) 144–148.

    Article  PubMed  CAS  Google Scholar 

  67. Ray, A., Henke, P.G. and Sullivan, R.M., Noradrenergic mechanisms in the central amygdalar nucleus and gastric stress ulcer formation in rats, Neurosci. Lett., 110 (1990) 331–336.

    Article  PubMed  CAS  Google Scholar 

  68. Rosen, J.B, Hamerman, E., Sitcoske, M. and Glowa, J.R., Hyperexcitability: Exaggerated fear-potentiated startle produce by partial amygdala kindling, Beh. Neuroscience, 110 (1996) 43–50.

    Article  CAS  Google Scholar 

  69. Roberts, G.W., Neuropeptides: Cellular Morphology, Major Pathways, and Functional Considerations, In John P. Aggleton (Ed.) The Amygdala, Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. Wiley-Liss, New York (1992), pp. 115–142.

    Google Scholar 

  70. Sackeim, H.A., Emotion, disorder of Mood, and Hemispheric Functional Specialization. In B.J. Carrol and J.E. Barrett (Eds.) Psychopathology and the Brain. Raven Press, New York (1991), pp. 209–242.

    Google Scholar 

  71. Salamone, J.D., The behavioral neurochemistry of motivation: Methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine, Neurosci. Method., 64 (1996) 137–149.

    Article  CAS  Google Scholar 

  72. Savander, V., Go, C.G., LeDoux, J.E. and Ptikanen, A., Intrinsic connections of the rat amygdaloid complex: Projection originating in the basal nucleus, J. Comp. Neurol., 361 (1995) 345–368.

    Article  PubMed  CAS  Google Scholar 

  73. Silveira, M.C.L. and Graeff, E.G., Defense reaction elicited by microinjection of kainic acid into the medial hypothalamus of the rat: Antagonism by a GABAA receptor agonist, Behay. Neural Biol., 57 (1992) 226–232.

    Article  CAS  Google Scholar 

  74. Silveira, M.C.L., Sandner, G. and Graeff, F.G., Induction of Fos immunoreactivity in the brain by exposure to the elevated plus-maze, Behay. Brain Res., 56 (1993) 115–118.

    Article  CAS  Google Scholar 

  75. Siegel, A., Anatomical and functional differentiation within the amygdala—behavioral state modulation, In R. Bandler (Ed.) Modulation of Sensorimotor Activity During alterations in Behavioral States. Alan R. Liss, Inc. New York (1984), pp. 299–323.

    Google Scholar 

  76. Sills, T. and Vaccarino, F.J., Individual differences in sugar consumption predict individual differences in sensitization to the locomotor activating effect of amphetamine, Soc. Neurosci. Absa:. 19 (1993) 334.10.

    Google Scholar 

  77. Stark-Adamec, C. & Adamec, R.E., Psychological methodology vs clinical impressions: Different perspectives on psychopathology and seizures, In B.K. Doane and K.E. Livingston (Eds.) The Limbic System: Functional Organization and Clinical Disorders. New York, Raven Press, (1986), pp. 217–227.

    Google Scholar 

  78. Stenzel-Poore M.P., Heinrichs S.C., Rivest S., Koob G.F., Vale W.W., Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior, J Neurosci. 14 (1994) 2579–84

    PubMed  CAS  Google Scholar 

  79. Stevens, J.R. and Livermore, A.Jr. Kindling of the mesolimbic doapmine system: animal model of psychosis, Neurology, Jan. (1978) 37–46.

    Google Scholar 

  80. Tershner, S.A. and Helmstetter, F.J., Pretraining injections of corticotropin releasing factor into the ventral periaqueductal gray enhance freezing to an auditory conditional aversive stimulus, Soc. Neurosci. Abstr, 19(1993)

    Google Scholar 

  81. Van der Kolk, B.A., The body keeps score: memory; the evolving psychobiology of posttraumatic stress disorder, Harvard Rev. Psychiat., Jan/Feb (1994) 253–265.

    Google Scholar 

  82. Wallace, D.M., Magnuson, D.J. and Gray, T.S., Organization of amygdaloid projections to brainstem dopaminergic, noradrenergic, and adrenergic cell groups in the rat, Brain Res. Bull., 28 (1992) 447–454.

    Article  PubMed  CAS  Google Scholar 

  83. Watanabe, Y., lkegaya,Y., Saito, H. and Abe, K., Roles of GABA5, NMDA and muscarinic receptors in induction of long-term potentiation in the medial and lateral amygdala in vitro, Neurosci. Res., 21 (1995) 317–322.

    Article  PubMed  CAS  Google Scholar 

  84. Watanabe, Y., Saito, H. and Abe, K., Nitric oxide is involved in long-term potentiation in the medial but not the lateral amygdala neuron synapses in vitro,. Brain Res., 688 (1995) 233–236.

    Article  PubMed  CAS  Google Scholar 

  85. Watson, R.E. Jr., Troiano, R., Poulakos, J., Weiner, S., Block, C.H. and Siege, A., A {42-Deoxyglucose Analysis of the functional neural pathways of the limbic forebrain in the Rat. 1. The amygdala, Brain Res. Rev., 5 (1983) 1–44.

    Article  CAS  Google Scholar 

  86. Witkin, J.M., Lee, M.A. and Woolsack, DD., Anxiolytic properties of amygdaloid kindling unrelated to benzodiazepine receptors, Psvchopharmacology, 96 (1988) 296–301.

    Article  CAS  Google Scholar 

  87. Whitman, S. and Hermann, B.P., The architecture of research in the epilepsy/psychopathology field, Epilepsy. Res. [EMAJ]., 3 (1989) 93–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adamec, R. (1998). Amygdala Kindling and Rodent Anxiety. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 5. Advances in Behavioral Biology, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5375-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5375-5_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7453-4

  • Online ISBN: 978-1-4615-5375-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics