Skip to main content

Idiosyncrasies of Limbic Kindling in Developing Rats

  • Chapter
Kindling 5

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 48))

Abstract

While expression of the basic kindling phenomena appears to be the same regardless of age, kindling in developing rats differs significantly from adult kindling in a number of characteristics which may shed light on age-dependent differences in human epilepsy4,26,(Baram this volume). At all ages (older than postnatal day [PN] 7), repeated electrical stimuli delivered to limbic structures lead to the progression from focal to generalized seizures, increase in afterdischarge (AD) duration, and a permanent alteration in seizure susceptibility. However, there are age-dependent differences in the rates of kindling development and kindling potential of specific limbic sites, motor seizure expression, interactions between kindled foci, and effects of kindling on dentate synaptic transmission and morphologic hippocampal alterations. These differences correlate well with the heightened seizure susceptibility of the young, their predisposition to multifocal seizures, and the resistance of the immature hippocampus to seizure-induced hippocampal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, R. F., Moshé, S. L. and Albala, B. J. (1989) Restriction of enhanced [2–14C]deoxyglucose utilization to rhinencephalic structures in immature amygdala-kindled rats. Experimental Neurology, 104: 73–81.

    Article  PubMed  CAS  Google Scholar 

  2. Applegate, C. D., Burchfiel, J. L. and Konkol, R. J. (1986) Kindling antagonism: effects of norepinephrine depletion on kindled seizure suppression after concurrent, alternate stimulation in rats. Experimental Neurology, 94: 379–90.

    Article  PubMed  CAS  Google Scholar 

  3. Applegate, C. D., Konkol, R. J. and Burchfiel, J. L. (1987) Kindling antagonism: a role for hindbrain norepinephrine in the development of site suppression following concurrent, alternate stimulation. Brain Research, 407: 212–22.

    Article  PubMed  CAS  Google Scholar 

  4. Baram, T. Z., Hirsch, E. and Schultz, L. (1993) Short-interval amygdala kindling in neonatal rats. Brain Research. Developmental Brain Research, 73: 79–83.

    Article  PubMed  CAS  Google Scholar 

  5. Browning, R. A. (1986) Neuroanatomical localization of structures responsible for seizures in the GEPR: lesion studies. Life Sciences, 39: 857–67.

    Article  PubMed  CAS  Google Scholar 

  6. Burchfiel, J. L., Applegate, C.D. and Konkol, R.J. Kindling antagonism: a role for norepinephrine in seizure suppression. In: “Kindling 3”, edited by J.A. Wada. New York. Raven Press, 1986, pp. 213–229.

    Google Scholar 

  7. Burchfiel, J. L., Serpa, K. A. and Duffy, F. H. (1982) Kindling antagonism: interactions of dorsal and ventral entorhinal cortex with the septum during concurrent kindling. Brain Research, 238: 3–12.

    Article  PubMed  CAS  Google Scholar 

  8. Cavazos, J. E. and Sutula, T. P. (1990) Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis [published erratum appears in Brain Res 1991 Feb 8;541(1):179]. Brain Research, 527: 1–6.

    Article  PubMed  CAS  Google Scholar 

  9. Croucher, M. J., Bradford, H. F., Sunter, D. C. and Watkins, J. C. (1988) Inhibition of the development of electrical kindling of the prepyriform cortex by daily focal injections of excitatory amino acid antagonists. European Journal of Pharmacology, 152: 29–38.

    Article  PubMed  CAS  Google Scholar 

  10. de Jonge, M. and Racine, R. J. (1987) The development and decay of kindling-induced increases in paired-pulse depression in the dentate gyrus. Brain Res, 412: 318–328.

    Article  PubMed  Google Scholar 

  11. Gale, K. (1988) Progression and generalization of seizure discharge: anatomical and neurochemical substrates. Epilepsia, 29: S15–34.

    Article  PubMed  Google Scholar 

  12. Gilbert, M. E. (1991) Potentiation of inhibition with perforant path kindling: an NMDA-receptor dependent process. Brain Research, 564: 109–16.

    Article  PubMed  CAS  Google Scholar 

  13. Goddard, G. V., McIntyre, D. C. and Leech, C. K. (1969) A permanent change in brain function resulting from daily electrical stimulation. Experimental Neurology, 25: 295–330.

    Article  PubMed  CAS  Google Scholar 

  14. Gravel, C. and Hawkes, R. (1990) Maturation of the corpus callosum of the rat: I. Influence of thyroid hormones on the topography of callosal projections. Journal of Comparative Neurology, 291: 128–46.

    Article  PubMed  CAS  Google Scholar 

  15. Haas, K. Z., Sperber, E. F. and Moshe, S. L. (1990) Kindling in developing animals: expression of severe seizures and enhanced development of bilateral foci. Brain Research. Developmental Brain Research, 56: 275–80.

    Article  PubMed  CAS  Google Scholar 

  16. Haas, K. Z., Sperber, E. F. and Moshe, S. L. (1992) Kindling in developing animals: interactions between ipsilateral foci. Brain Research. Developmental Brain Research, 68: 140–3.

    Article  PubMed  CAS  Google Scholar 

  17. Honack, D., Wahnschaffe, U. and Loscher, W. (1991) Kindling from stimulation of a highly sensitive locus in the posterior part of the piriform cortex. Comparison with amygdala kindling and effects of antiepileptic drugs. Brain Research, 538: 196–202.

    Article  PubMed  CAS  Google Scholar 

  18. Kristensson, K., Zeller, N. K., Dubois-Dalcq, M. E. and Lazzarini, R. A. (1986) Expression of myelin basic protein gene in the developing rat brain as revealed by in situ hybridization. Journal of Histochemistry & Cytochemistrv, 34: 467–73.

    Article  CAS  Google Scholar 

  19. Loscher, W., Ebert, U., Wahnschaffe, U. and Rundfeldt, C. (1995) Susceptibility of different cell layers of the anterior and posterior part of the piriform cortex to electrical stimulation and kindling: comparison with the basolateral amygdala and “area tempestas”. Neuroscience, 66: 265–76.

    Article  PubMed  CAS  Google Scholar 

  20. Maru, E. and Goddard, G. V. (1987) Alteration in dentate neuronal activities associated with perforant path kindling III. Enhancement of synaptic inhibition. Exp Neurol, 96: 46–60.

    Article  PubMed  CAS  Google Scholar 

  21. McIntyre, D. C., Kelly, M. E. and Armstrong, J. N. (1993) Kindling in the perirhinal cortex. Brain Research, 615: 1–6.

    Article  PubMed  CAS  Google Scholar 

  22. McIntyre, D. C. and Plant, J. R. (1993) Long-lasting changes in the origin of spontaneous discharges from amygdala-kindled rats: piriform vs. perirhinal cortex in vitro. Brain Research, 624: 268–76.

    Article  PubMed  CAS  Google Scholar 

  23. McIntyre, D. C., Rajala, J. and Edson, N. (1987) Suppression of amygdala kindling with short interstimulus intervals: effect of norepinephrine depletion. Experimental Neurology, 95: 391–402.

    Article  PubMed  CAS  Google Scholar 

  24. Milgram, N. W., Michael, M., Cammisuli, S., Head, E., Ferbinteanu, J., Reid, C., Murphy, M. P. and Racine, R. (1995) Development of spontaneous seizures over extended electrical kindling. Il. Persistence of dentate inhibitory suppression. Brain Research, 670: 112–20.

    Article  PubMed  CAS  Google Scholar 

  25. Milgram, N. W., Yearwood, T., Khurgel, M., Ivy, G. O. and Racine, R. (1991) Changes in inhibitory processes in the hippocampus following recurrent seizures induced by systemic administration of kainic acid. Brain Research, 551: 236–46.

    Article  PubMed  CAS  Google Scholar 

  26. Moshé, S. L. (1981) The effects of age on the kindling phenomenon. Developmental Psychobiology, 14: 75–81.

    Article  PubMed  Google Scholar 

  27. Moshe, S. L. and Albala, B. J. (1982) Kindling in developing rats: persistence of seizures into adulthood. Brain Research, 256: 67–71.

    PubMed  CAS  Google Scholar 

  28. Moshé, S. L. and Albala, B. J. (1983) Maturational changes in postictal refractoriness and seizure susceptibility in developing rats. Annals of Neurology, 13: 552–7.

    Article  PubMed  Google Scholar 

  29. Moshé, S. L., Albala, B. J., Ackermann, R. F. and Engel, J., Jr. (1983) Increased seizure susceptibility of the immature brain. Brain Research, 283: 81–5.

    PubMed  Google Scholar 

  30. Moshé, S. L., Brown, L. L., Kubova, H., Veliskova, J., Zukin, R. S. and Sperber, E. F. (1994) Maturation and segregation of brain networks that modify seizures. Brain Research, 665: 141–6.

    Article  PubMed  Google Scholar 

  31. Pinel, J. P. and Rovner, L. I. (1978) Electrode placement and kindling-induced experimental epilepsy. Experimental Neurology, 58: 335–46.

    Article  PubMed  CAS  Google Scholar 

  32. Piredda, S. and Gale, K. (1985) A crucial epileptogenic site in the deep prepiriform cortex. Nature, 317: 623–5.

    Article  PubMed  CAS  Google Scholar 

  33. Racine, R. J. (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography & Clinical Neu ophysiologv,32: 281–94.

    Article  CAS  Google Scholar 

  34. Racine, R. J., Mosher, M. and Kairiss, E. W. (1988) The role of the pyriform cortex in the generation of interictal spikes in the kindled preparation. Brain Research, 454: 251–63.

    Article  PubMed  CAS  Google Scholar 

  35. Stanton, R. K. (1992) Noradrenergic modulation of epileptiform bursting and synaptic plasticity in the dentate gyrus. Epilepsy Research—Supplement, 7: 135–50.

    PubMed  CAS  Google Scholar 

  36. Stevens, J. R., Phillips, I. and de Beaurepaire, R. (1988) gamma-Vinyl GABA in endopiriform area suppresses kindled amygdala seizures. Epilepsia, 29: 404–11.

    Article  PubMed  CAS  Google Scholar 

  37. Sutula, T., He, X. X., Cavazos, J. and Scott, G. (1988) Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science, 239: 1147–50.

    Article  PubMed  CAS  Google Scholar 

  38. Zhao, D. Y. and Moshé, S. L. (1987) Deep prepiriform cortex kindling and amygdala interactions. Epilepsy Research, 1 94–101.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haas, K.Z., Sperber, E.F., Benenati, B., Stanton, P.K., Moshé, S.L. (1998). Idiosyncrasies of Limbic Kindling in Developing Rats. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 5. Advances in Behavioral Biology, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5375-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5375-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7453-4

  • Online ISBN: 978-1-4615-5375-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics