Skip to main content
Book cover

Kindling 5 pp 179–191Cite as

Comparison of Synapse Remodeling Following Hippocampal Kindling and Long-Term Potentiation

  • Chapter
  • 88 Accesses

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 48))

Abstract

Hippocampal kindling and long-term potentiation (LTP) are widely regarded as models of synaptic plasticity2,28,31. In the kindling paradigm23,24,a behaviorally ineffective electrical stimulus of a high frequency is delivered daily to a local forebrain area. This leads to progressive intensification of paroxysmal neuronal activity and alterations in motor behavior that culminate eventually in a generalized seizure. Once this response to the constant stimulus has been attained, cessation of stimulation for many months and even years does not result in the loss of the newly acquired abnormal reaction: reintroduction of the original stimulus reliably evokes a generalized seizure24,25,30,31,33,42.Thus, kindling involves a virtually permanent augmentation of synaptic responsiveness in the stimulated circuit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, C.A., Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat, J. Comp. Physiol. Psychol., 93 (1979) 74–104.

    Article  PubMed  CAS  Google Scholar 

  2. Bliss, T.V.P. and Collingridge, G.L., A synaptic model of memory: Long-term potentiation in the hippo-campus, Nature, 361 (1993) 31–39.

    Article  PubMed  CAS  Google Scholar 

  3. Bliss, T.V.P. and Gardner-Medwin, A., Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path, J. Physiol., 232 (1973) 357–374.

    PubMed  CAS  Google Scholar 

  4. Bliss, T.V.P. and Lomo, T., Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol., 232, (1973) 331–356.

    PubMed  CAS  Google Scholar 

  5. Brændgaard, H. and Gundersen, H.J.G., The impact of recent stereological advances on quantitative studies of the nervous system, J. Neurosci. Methods, 18 (1986) 39–78.

    Article  PubMed  Google Scholar 

  6. Cain, D.P., Long-term potentiation and kindling: How similar are the mechanisms?, Trends Neurosci., 12 (1989) 6–10.

    Article  PubMed  CAS  Google Scholar 

  7. Calverley, P.K.S. and Jones, D.G., Contribution of dendritic spines and perforated synapses to synaptic plasticity, Brain Res. Rev., 15 (1990) 215–249.

    Article  PubMed  CAS  Google Scholar 

  8. Cavazos, J.E., Das, J. and Sutula, T.P., Neuronal loss induced in limbic pathways by kindling: Evidence for induction of hippocampal sclerosis by repeated brief seizures, J. Neurosci., 14 (1994) 3106–3121.

    PubMed  CAS  Google Scholar 

  9. Chang, F.-L. and Greenough, W.T., Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice, Brain Res., 309 (1984) 35–46.

    Article  PubMed  CAS  Google Scholar 

  10. Cohen, R.S. and Siekevitz, P., Form of the postsynaptic density. A serial section study, J. Cell Biol., 78 (1978) 36–46.

    Article  PubMed  CAS  Google Scholar 

  11. Cotonnier, M., Synaptic patterns of different cell types in the different laminae of the cat visual cortex. An electron microscopic study, Brain Res., 9 (1968) 268–287.

    Article  Google Scholar 

  12. Desmond, N.L. and Levy, W.B., Changes in the numerical density of synaptic contacts with long-term potentiation in the hippocampal dentate gyrus, J. Comp. Neurol., 253 (1986) 466–475.

    Article  PubMed  CAS  Google Scholar 

  13. Edwards, F.A., LTP-a structural model to explain the inconsistencies, Trends Neurosci., 18 (1995) 250–255.

    Article  PubMed  CAS  Google Scholar 

  14. Geinisman, Y., Perforated axospinous synapses with multiple, completely partitioned transmission zones: Probable structural intermediates in synaptic plasticity. Hippocampus, 3 (1993) 417–434.

    Google Scholar 

  15. Geinisman, Y., L. deToledo-Morrell, and F. Morrell, Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities, Brain Res., 566 (1991) 77–88.

    Article  PubMed  CAS  Google Scholar 

  16. Geinisman, Y., Morrell, F. and deToledo-Morrell, L., Remodeling of synaptic architecture during hippocampal “kindling”, Proc. Natl. Acad. Sci. USA, 85 (1988) 3260–3264.

    Article  PubMed  CAS  Google Scholar 

  17. Geinisman Y., Morrell F. and deToledo-Morrell, L., Increase in the relative proportion of perforated axospinous synapses following hippocampal kindling is specific for the synaptic field of stimulated axons Brain Res., 507 (1990) 325–331.

    Article  PubMed  CAS  Google Scholar 

  18. Geinisman, Y., Morrell, F. and deToledo-Morrell, L., Alterations of synaptic ultrastructure induced by hippocampal kindling. In J.A. Wada (Ed.), Kindling 4, Plenum, New York, 1990, pp. 75–92.

    Chapter  Google Scholar 

  19. Geinisman, Y., Morrell, F. and deToledo-Morrell, L., Increase in the number of axospinous synapses with segmented postsynaptic densities following hippocampal kindling, Brain Res., 569 (1992) 341–357.

    Article  PubMed  CAS  Google Scholar 

  20. Geinisman, Y., deToledo-Morrell, L., Morrell, F., Persina, I.S. and Beatty, M.A., Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation, J. Comp. Neural., 368 (1996) 413–423.

    Article  CAS  Google Scholar 

  21. Geinisman, Y., deToledo-Morrell, L., Morrell, F., Heller, R.E., Rossi, M. and Parshall, R.F., Structural synaptic correlate of long-term potentiation: Formation of axospinous synapses with multiple, completely partitioned transmission zones, Hippocampus, 3 (1993) 435–446.

    Article  PubMed  CAS  Google Scholar 

  22. Goddard, G.V., The development of epileptic seizures through brain stimulation at low intensity, Nature, 214 (1967) 1020–1021.

    Article  PubMed  CAS  Google Scholar 

  23. Goddard, G.V., The kindling model of epilepsy, Trends Neurosci., 6 (1983) 275–279.

    Article  Google Scholar 

  24. Goddard, G.V., McIntyre, D. and Leech, C.. A permanent change in brain function resulting from daily electrical stimulation, Exp. Neural., 25 (1969) 295–330

    Article  CAS  Google Scholar 

  25. Gundersen, H.J.G., Bagger, P., Bendtsen, T.F., Evans, S.M., Korbo, L., Marcussen, N., Møller, A., Nielsen, K., Nyengaard, J.R., Pakkenberg, B., Sørensen, F.B., Vesterby, A. and West, M.J., The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis, Acta Pathlo. Microbiol. Immunol. Scand., 96 (1988). 857–881.

    CAS  Google Scholar 

  26. Lee, K.S., Schottler F., Oliver, M., and Lynch, G., Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus, J. Neurophysiol., 44 (1980) 247–258.

    PubMed  CAS  Google Scholar 

  27. Lynch, G., Muller, D., Seubert, P. and Larson, J., Long-term potentiation: Persisting problems and recent results, Brain Res. Bull., 21 (1988) 363–372.

    Article  PubMed  CAS  Google Scholar 

  28. McNaughton, B.L., Barnes, C.A. and Anderson, P., Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro, J. Neurophysiol., 46 (1981) 952–966.

    PubMed  CAS  Google Scholar 

  29. Morrell, F., Goddard’s kindling phenomenon. In H.C. Sabelli (Ed.), Chemical Modulation of Brain Function, Raven, New York, 1973, pp. 207–223.

    Google Scholar 

  30. Morrell, F. and deToledo-Morrell, L., Kindling as a model of neuronal plasticity. In J.A. Wada (Ed.), Kindling 3, Raven, New York, 1986, pp. 17–33.

    Google Scholar 

  31. Peters, A. and Kaiserman-Abramof, I.R., The small pyramidal neuron of the rat cerebral cortex. The synapses upon dendritic spines, Z. ZellJorsch., 100 (1969) 487–506.

    Article  CAS  Google Scholar 

  32. Racine, R., Kindling: The first decade, Neurosurgery, 3 (1978) 234–252

    Article  PubMed  CAS  Google Scholar 

  33. Racine, R. J. and Cain, D. P., Kindling-induced potentiation. In F. Morrell (Ed.), Kindling and Synaptic Plasticity: The Legacy of Graham Goddard, Birkhäuser, Boston, 1991, pp. 38–53.

    Google Scholar 

  34. Racine, R. J., Milgram, N.W. and Hafner, S., Long-term potentiation phenomena in the rat limbic forebrain, Brain Res., 260 (1983) 217–231.

    Article  PubMed  CAS  Google Scholar 

  35. Racine R., Newberry, F. and Burnham, W.M., Post-activation potentiation and the kindling phenomenon, Electoenceph. Clin. Neurophysiol., 39 (1975) 261–273.

    Article  CAS  Google Scholar 

  36. Represa, A., Jorquera, I., Le Gal La Salle, G., Ben-Ari, Y., Epilepsy induced collateral sprouting of hippocampal mossy fibers: Does it induce the development of ectopic synapses with granule cell dendrites?, Hippocampus, 3 (1993) 257–268.

    Article  PubMed  CAS  Google Scholar 

  37. Sutula, T. and Steward, O., Quantitative analysis of synaptic potentiation during kindling of the perforant path, J. Neurophysiol., 56 (1986) 732–746.

    PubMed  CAS  Google Scholar 

  38. Sutula, T. and Steward, O., Facilitation of kindling by prior induction of long-term potentiation in the perforant path, Brain Res., 420 (1987) 109–117.

    Article  PubMed  CAS  Google Scholar 

  39. Sutula, T., Xiao-Xian, H., Cavazos, H. and Scott, G., Synaptic reorganization in the hippocampus induced by abnormal functional activity, Science, 239 (1988) 1147–1150

    Article  PubMed  CAS  Google Scholar 

  40. Trommald, M., Vaaland, J.L., Blackstad, T.W. and Andersen, P., Dendritic spine changes in rat dentate granule cells associated with long-term potentiation, In A. Guidotti (Ed.), Neurotoxicity of Excitatory Amino Acids, Raven, New York, 1990, pp. 163–174.

    Google Scholar 

  41. Wada, J.A. and Sato, M., Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats: Correlative electrographic and behavioral seizures. Neurology, 24 (1974) 565–574.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geinisman, Y., Morrell, F., deToledo-Morrell, L., Persina, I.S., Van der Zee, E.A. (1998). Comparison of Synapse Remodeling Following Hippocampal Kindling and Long-Term Potentiation. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 5. Advances in Behavioral Biology, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5375-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5375-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7453-4

  • Online ISBN: 978-1-4615-5375-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics