Skip to main content

Crystal Structure of The Rhizomucor miehei Aspartic Proteinase

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 436))

Abstract

The composition of milk has been reviewed by Jenness (1). It is an extremely complex mixture of components, consisting of water, lipids, carbohydrates, proteins, salts and many miscellaneous compounds. The largest component is water. The lipids are 98% triglycerides, mostly as globules. Carbohydrate is mainly as lactose. There are several classes of proteins. The largest group (80%) are phosphoproteins called “caseins”. They are associated with calcium in “casein micelles”, which are 20–300 μn in diameter. The α1s-, α s2-, β- and κ-caseins are in the ratio 3: 0.8: 3: 1. The other milk proteins are called “whey proteins” and include β-lactoglobulin, α-lactalbumin, blood serum albumin and immunoglobulins. In total there are probably about 105 kinds of molecules in milk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Jenness, Composition of Milk, In: Fundamentals of Dairy Chemistry, N.R Wong, ed., Van Nostrand Reinhold Co., New York, 1–38 (1988).

    Chapter  Google Scholar 

  2. R.J. Brown & C.A. Ernstrom, Milk-Clotting Enzymes and Cheese Chemistry, Part I--Milk-Clotting Enzymes, In: Fundamentals of Dairy Chemistry, N.R Wong, ed., Van Nostrand Reinhold Co., New York, 609–633 (1988).

    Chapter  Google Scholar 

  3. K. Arima, S. Iwasaki & G. Tamura, Milk clotting enzyme from microorganisms Part I. Screening test and the identification of the potent fungus, Agr. Biol Chem., 31:540–545 (1967).

    Article  CAS  Google Scholar 

  4. D.B. Hyslop, A.M. Swanson & D.B. Lund, Heat inactivation of milk clotting enzymes at different pH hydrogen-ion concentration, Mucor miehei, Mucor pusillus proteases, and rennet and rennet-pepsin, J. Dairy Sei., 62:1227–1232 (1979).

    Article  CAS  Google Scholar 

  5. T. Yamashita, S. Higashi, T. Higashi, H. Machida, S. Iwasaki, M. Nishiyama, & T. Beppu, Mutation of a fungal aspartic proteinase, Mucor pusillus renin, to decrease thermal stability for use as a milk coagulant, J. Biotech., 32:17–28 (1994).

    Article  CAS  Google Scholar 

  6. W.S. Rickert & RA. McBride-Warren, Structural and functional determinants of Mucor miehei protease. III, isolation and composition of the carbohydrate moiety, Biochim. Biophys. Acta, 336:437–444 (1974).

    Article  CAS  Google Scholar 

  7. S. Branner-Jorgensen, P. Eigtved & P. Schneider, Reduced thermostability of modified Mucor rennet, Neth. Milk and Dairy J., 35: 361–364 (1981).

    Google Scholar 

  8. S. Branner-Jorgensen, P. Schneider & P. Eigtved, A method of modifying the thermal destabilization of microbial rennet and a method of cheese making using rennet so modified, U.K. Pat. Appl. 2,045,772A (1980).

    Google Scholar 

  9. D.A. Cornelius, Process for decreasing the thermal stability of microbial rennet, U.S. Pat 4,348,482 (1982).

    Google Scholar 

  10. A. Goldman, How to make my blood boil, Structure, 3:1277–1279.

    Google Scholar 

  11. E.D. Brown & R.Y. Yada, A kinetic and equilibrium study of the denaturation of aspartic proteinases from fungi, Endothia parasitica and Mucor miehei, Biochemica et Biophysica Acta, 1076:406–415 (1991)

    Article  CAS  Google Scholar 

  12. J.L. Aikawa, T. Yamashita, Nishiyama, S. Horinouchi & T. Beppu, Effects of glycosylation on the secretion and enzyme activity of Mucor renin, an aspartic proteinase of Mucor pusillus, produced by recombinant yeast, J. Biol. Chem., 265:13955–13959 (1990).

    PubMed  CAS  Google Scholar 

  13. A.-M. Bech & B. Foltmann, Partial primary structure of Mucor miehei protease milk-clotting enzyme, Neth. Milk Dairy J., 35:275–280 (1981).

    CAS  Google Scholar 

  14. E. Boel, A.-M. Bech, K. Randrup, B. Draeger, N.P. Fiil & B. Foltmann, Primary structure of a precursor to the aspartic proteinase from Rhizomucor miehei shows that the enzyme is synthesized as a zymogen, Proteins Struct. Funct. Biol., 1:363–369 (1986).

    Article  CAS  Google Scholar 

  15. Z. Jia, M. Vandonselaar, P. Schneider & J.W. Quail, Crystallization and preliminary X-ray structure solution of Rhizomucor miehei aspartic proteinase, Acta Crystallogr. Sect. D, 51:243–244 (1995).

    Article  CAS  Google Scholar 

  16. C. Thaller, L.H. Weaver, G. Eichele, E. Wilson, R. Karlsson & J.N. Jansonius, Repeated seeding technique for growing large single crystals of proteins, J. Mol. Biol., 147, 465–469 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. Z. Otwinowski, Oscillation data reduction program. In: Data collection and processing: Proceedings of the CCP4 study weekend, 29–30 January, 1993. L. Sawyer, N. Issacs & S. Bailey, eds., Science and Engineering Research Council, Daresbury Laboratory, Warrington, UK (1993).

    Google Scholar 

  18. Collaborative Computational Project #4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. Sect. D, 50:760–763 (1994).

    Article  Google Scholar 

  19. M. Baudys, S. Foundling, M. Pavlik, T. Blundell & V. Kostka, Protein chemical characterization of Mucor pusillus aspartic proteinase. Amino acid sequence homology with the other aspartic proteinases, disulfide bond arrangement and site of carbohydrate attachment, FEBS Lett., 235:271–274 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. M. Newman, F. Watson, P. Roychowdhury, H. Jones, M. Badasso, A. Cleasby, S.P. Wood, I.J. Tickle & TL. Blundell, X-ray analysis of aspartic proteinases V. Structure and refinement at 2.0 Å resolution of the aspartic proteinase from Mucor pusillus, J. Mol. Biol., 230:260–283 (1993).

    Article  CAS  Google Scholar 

  21. J. Navaza, AMoRe: an automated package for molecular replacement, Acta Cryst. Sect. A., 50:157—163 (1994).

    Article  Google Scholar 

  22. A.T. Brünger, XPLOR Manual Version 3.1. Yale University, New Haven, CT 06511, USA. (1992).

    Google Scholar 

  23. R.J. Read, Improved Fourier coefficients for maps using phases from partial structures with errors, Acta Crystallogr. Sect. A, 42:140–149 (1986).

    Article  Google Scholar 

  24. A.T. Brünger, Free R value: A novel statistical quantity for assessing the accuracy of crystal structures, Nature, 55:472–475 (1992).

    Article  Google Scholar 

  25. R.A. Laskowski, M.W. MacArthur, S.G. Hutchinson & J.M. Thornton, PROCHECK: a new program to check the stereochemical quality of protein structures, J. Appl. Cryst., 26:283–291 (1993).

    Article  CAS  Google Scholar 

  26. G.N. Ramachandran, & V. Sasisekharan, Conformation of polypeptides and proteins, Advan. Protein Chem., 23:283–437(1968).

    Article  CAS  Google Scholar 

  27. R. Bott, E. Subramanian & D.R. Davies, Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5 Å recresolution, Biochemistry, 21:6956–6962 (1982).

    Article  PubMed  CAS  Google Scholar 

  28. M.N.G. James, A. Sielecki, F. Salituro, D.H. Rich & T. Hofmann, Conformational flexibility in the active sites of aspartyl proteinases revealed by pepstatin fragment binding to penicillopepsin, Proc. Natl. Acad. Sei., 79:6137–6141 (1982).

    Article  CAS  Google Scholar 

  29. L. Holm & C. Sander, Protein structure comparison by alignment of distance matrices, J. Mol. Biol, 233:123–138(1993).

    Article  PubMed  CAS  Google Scholar 

  30. N.S. Andreeva & M.N.G. James, Structure and Function of the Aspartic Proteinases: Genetics, Structure, and Mechanisms. Advances in Experimental Medicine and Biology, Vol. 306, Springer Science+Business Media New York, USA. (1991).

    Google Scholar 

  31. T. Yamauchi, M. Nagahama, H. Hori & K. Murakami, Functional characterization of Asp-317 mutant of human renin expressed in COS cells. FEBS Lett., 230:205–208 (1988).

    Article  PubMed  CAS  Google Scholar 

  32. D. Mantafounis & J. Pitts, Protein engineering of chymosin: modification of the pH optimum of enzyme catalysis, Prot. Eng., 3:605–609 (1990).

    Article  CAS  Google Scholar 

  33. K.A. Sharp & A. Nicholls, DelPhi V3.0 Manual. Department of Biochemistry and Molecular Biophysics, Columbia University, USA. (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quail, J.W., Yang, J., Schneider, P., Jia, Z. (1998). Crystal Structure of The Rhizomucor miehei Aspartic Proteinase. In: James, M.N.G. (eds) Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 436. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5373-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5373-1_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7452-7

  • Online ISBN: 978-1-4615-5373-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics